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We present a high-order accurate weighted essentially non-oscillatory (WENO)
finite difference scheme for solving the equations of ideal magnetohydrodynamics
(MHD). This scheme is a direct extension of a WENO scheme, which has been
successfully applied to hydrodynamic problems. The WENO scheme follows the
same idea of an essentially non-oscillatory (ENO) scheme with an advantage of
achieving higher-order accuracy with fewer computations. Both ENO and WENO
can be easily applied to two and three spatial dimensions by evaluating the fluxes
dimension-by-dimension. Details of the WENO scheme as well as the construction
of a suitable eigen-system, which can properly decompose various families of MHD
waves and handle the degenerate situations, are presented. Numerical results are
shown to perform well for the one-dimensional Brio—-Wu Riemann problems, the
two-dimensional Kelvin—Helmholtz instability problems, and the two-dimensional
Orszag-Tang MHD vortex system. They also demonstrate the importance of main-
taining the divergence free condition for the magnetic field in achieving numerical
stability. The tests also show the advantages of using the higher-order scheme. The
new 5th-order WENO MHD code can attain an accuracy comparable with that of the
second-order schemes with many fewer grid points.1999 Academic Press
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1. INTRODUCTION

In this paper, a high-order accurate weighted essentially non-oscillatory (WENO) fi
difference scheme is presented for solving the ideal magnetohydrodynamics (M
equations

pr=—=V-(pv), 1.1)
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(pV)y = -V - _pw+<r<p+ ;BZ> - BB} , (1.2)

B: =V x (v x B), (1.3)

&g =—-V- _<yp+1pv2)v—(VxB)XB} (1.4)
[\y—=1" 2

Herep, p, v, B, ande denote the mass density, the hydrodynamic pressure, the veloc
field, the magnetic field, and the total energy, respectively. The ratio of the specific hea
given byy ande = pv?+ 1B%+ p/(y — 1). In addition to these equations, the magnetic
field satisfies the divergence free conditidh, B =0.

The WENO schemes are based on the essentially non-oscillatory (ENO) schemes, w
were first developed by Harteal.[12] in the form of finite volume schemes and were later
improved by Shu and Osher [27] into a more efficient and easy-to-implement finite diff
ence form. The ENO schemes are generalizations of the total variation diminishing (TV
schemes of Harten [11]. The TVD schemes typically degenerate to first-order accurac
locations with smooth extrema while the ENO schemes maintain high-order accuracy t
even in multi-spatial dimensions. Despite their high-order accuracy, ENO schemes ar
capable as TVD schemes in suppressing spurious oscillations in the numerical solutio

The key idea of the ENO schemes is to use the smoothest stencil among several candi
to approximate the fluxes at the cell boundaries to high order and at the same time to a
spurious oscillations near shocks and discontinuities. The WENO schemes go one
further by taking a weighted average of all candidates. The weights are adjusted by
local smoothness of the solution so that essentially zero weights are given to non-sm
stencils while optimal weights are prescribed in smooth regions. Around the discontinuit
WENO schemes behave similarly to ENO schemes, butin the smooth regions of the solu
WENO schemes act more like an upstream centered scheme. In principlethamyler
accurate ENO scheme can be “converted” t@ra— 1)st order accurate WENO scheme.

The first version of WENO schemes was developed bydtial. [17] in finite volume
formulation for one-dimensional conservation laws. Later, Jiang and Shu [14] presente
finite difference version of WENO schemes for multidimensional conservation laws and a
optimized the accuracy of the scheme with a new weighting procedure. The finite differe
WENO scheme, which has been extensively tested on multidimensional hydrodyna
problems [14, 35], is applied here for the MHD code.

As in many other modern shock capturing methods, our WENO scheme is based on
local characteristic decomposition of waves. The fluxes are first separated into each fa
of waves. Then they are split into positive and negative parts by either global or local Le
Friedrichs flux splitting. Subsequently, the fluxes at the cell boundaries are constructec
the WENO approximation.

Because of the wave decomposition procedure, considerable work is required to eval
the MHD eigensystem. There are seven waves in the MHD system. In addition to the
tropy wave, which propagates with the fluid spegdhere are three wave modes, which can
propagate with twe + ¢ speeds, wheredenotes the characteristic speed of the mode. Ac
cording to the magnitude of the wave speeds, these three modes are called fast, interme
(Alfv’en), and slow waves. The fast and slow waves are compressive, while the inter
diate wave is not. Depending on the direction and the magnitude of the magnetic fi
these wave speeds may coincide. Thus the MHD equations form a non-strictly hyperb
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system. In spite of this, a complete set of eigenvectors can be found and, with pr
normalizations, they are well-defined [4, 22].

The jump relations of the MHD system are equally complicated. There are six entrc
satisfying shock jump relations. Two are fast and slow shocks. The other four transition:
called intermediate shocks. For a fast shock, there is a pair of converging fast waves int
shock. Similarly, there is a pair of slow waves converging into a slow shock. For one typ
intermediate shock, one has a pair of converging intermediate waves. The other three
of intermediate shocks are over-compressive, which can have converging fast wave
slow waves, or both, in addition to intermediate waves. There are limiting cases when
of the converging characteristics has the same speed as the shock. Thus compound
where a shock is attached by a rarefaction wave or a rarefaction wave is attached by a
can be formed, as was first observed by Brio and Wu [3, 4]. Besides the shock waves,
are other discontinuities in the MHD Rankine—Hugoniot relations. They include cont
discontinuity, tangential discontinuity, and rotational discontinuity.

Since the MHD system is not genuinely nonlinear [3, 4], one may question the vali
of using shock capturing schemes for its calculations. Indeed, in a series of nume
and analytical studies [33, 34, 15], it is shown that whenever a rotation of the magn
field occurs, the evolution of the MHD system may depend on the dissipation mechan
which according to the Navier—Stokes MHD equations, includes bulk and shear viscosi
resistivity, and heat conductivity. Thus two different shock capturing schemes with diffet
numerical dissipation terms can produce two different solutions. Furthermore, a captt
scheme may not lead to convergent results as the sizes of the time step and the grid sj
are refined because the numerical dissipation terms may change in the process. The sit
stems from the fact that the shock structure of intermediate shocks is generally not un
Our new code, which is a shock capturing scheme, has the same drawback. We en
that one can correct the situation by selectively in the computation including the dissipe
terms for resolving intermediate shock structures.

Another numerical issue in the MHD calculation concerns the conditiovi oB = 0.
While this condition is formally ensured if it is satisfied by the initial data, the numeric
truncation errors can lead to nonzero value. Since our code is of high-order accura
the smooth region, the errors in this condition should be small and should vanish in
limiting sense. However, across a discontinuity, the truncation error is of first order
the problem can be serious. This issue has been considered by many authors and <
remedies have been tried [2, 36, 24, 20, 5, 9, 8]. We have experimented with a schem
enforces the condition by a correction method [2, 36, 24]. First we solve for the poter
¢ for the Poisson equatio;’¢ + V - B =0, with B the updated magnetic field obtainec
by the WENO scheme. Then we compute the corrected magnetic fiBfdaB + V¢, for
whichV - B®=0.

In the last decade, several schemes, which share some common aspects with our sc
have been developed for the MHD equations. In 1988, Brio and Wu [4] presented
first second-order upwind TVD scheme for one spatial dimension where they succ
fully constructed a Roe matrix [21] for the MHD equations in the case ef2. De-
generacies of the eigen-system were treated by them with proper normalization tc
move singularities that can occur. Later, the scheme was extended to multidimens
flow by Ryu et al. [23, 24] and by Tanaka [29]. Aslan [1] also followed the idea ©
the Roe scheme to construct a second-order upwind MHD scheme by a fluctuatior
proach. Another interesting upwind scheme was developed by Petral[20] following
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the same line of the Roe scheme [21]. They also proposed an eight-wave family eic
system instead of the usual seven-wave family eigen-system. Their method will be ¢
ployed in constructing our 8 8 eigen-system. Zachamt al. [36] applied an operator
splitting technique and devised a high order Godunov type scheme. Recently, Dai
Woodward [7] proposed an approximate Riemann solver for obtaining numerical flu
at cell interface. They have incorporated artificial viscosity to handle strong shocks.
the schemes mentioned above have been successfully applied to multidimensional N
equations.

We have developed a set of 5th-order accurate semi-discrete WENO MHD codes in ¢
two, and three spatial dimensions. The application to higher spatial dimensions is achie
by computing the fluxes dimension-by-dimension. The 4th-order Runge—Kutta schem
Shu [25]is used for the time evolution. The new MHD codes do well in calculating the sol
tions of one-dimensional MHD Riemann problems and the two-dimensional evolution of t
Kelvin—Helmholtz instability in a magnetized system. They have also provided solutio
for the Orszag—Tang turbulence model [18]. The numerical tests show that maintain
the divergence-free condition for the magnetic field is important in achieving numeric
stability. They also show the advantages of using the higher-order scheme.

The outline of the paper is as follows: In Section 2, we define the WENO scheme &
present the eigen-systems for the MHD equations. The numerical results are present
Section 3. Some remarks are made in Section 4.

2. THE NUMERICAL METHOD

Since the formulation of the ENO scheme in the finite volume form by Hatteh[12],
there have been many improvements in the methodology. In this paper, a finite differe
version of Shu and Osher [27], with its extension to the WENO idea by Jiang and Shu [1
is applied to the MHD code. The finite difference formulation, which is based on poi
values, has proved to be more computationally efficient than the finite volume schel
The method can be generalized in a straightforward manner to multi-spatial dimension:
detailed account of the construction, analysis, and application of ENO/WENO scheme
recently provided by Shu [26]. In this section, we define the scheme we use in the pa
including the choice of flux splitting and the characteristic decomposition.

We first describe the basic idea of the WENO scheme which involves the computat
of the cell-interface values of an one-dimensional function from its cell averages at
neighboring cells. We then present the WENO scheme for conservation laws. In the
subsection, we describe the eigen-system for the MHD equations, including its left-
right-eigenvectors, which are required for wave projections.

2.1. The Basic Idea of the WENO Approximation

Let h(x) : [0, 1] — R be a piecewise smooth function. We discretize the interval][0
into uniform spaced subintervals with grid points=iAx,0<i <N and Ax=1/N.
Define thesliding averageof h(x) over an intervalAx as

_ 1 X+%
hA(x)zﬂ/ . h(s)ds. (2.1)
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FIG. 1. The three sub-stencils.

Suppose thaﬁk = HA(xk) is known fork=i —2,i —1,i,i + 1, andi + 2, the WENO ap-
proximation ofh(Xi+1/2) (Xi+1/2 =X + AX/2) possesses the following two properties:

(1) If h(x) is smooth neax; 1/, the approximated valug_,1,> of h(xi+1/2) satisfies
hiy = h(xiJr%) + O(AX®).

(2) If h(x) is discontinuous neaf 12, No Gibbs phenomena (i.e., spurious oscilla
tions) occur.

The idea of the WENO scheme is to weight properly the three sub-stencils of the five-p
stencilxx, i —2<k<i+2 (see Fig. 1). In each sub-stensi{s=0, 1, 2) the 3rd-order
accurate approximatiohiSH/2 to h(xi+1/2) is obtained by the Taylor series expansion o
h(x) as

1- I 11~
hi0+% = éhi—z - éhi—l + Ehiv
1— - 1-
hil+% = _6hi_l + éhi + éhi-kl,
1- 5~ 1-
hiz_,_% = éhi + éhi+1 - éhi+2-

The WENO approximation dfi(x;+1,2) assumes the form

hiys = woh&% +othi,, + a)zhii%, (2.2)
wherew, w1, w; are the positive weightsvith wg + w1 + w2 = 1. Replacingp; by 1 — wo —

wy and also using the three 3rd-order formulae in (2.2), we get

1 - _ 1 - _ _
hij1 = 1_2(_hi71 +7hi +7hiy 1 — hiy2) + éwo(hPZ —3hi_1 +3h; —hiyp)
1 1\ — _
+ 6<w2 - 2>(hi—1 —3hi + 3hi11 — hij2).

! Notice that the 5th approximation ki ,1/,) based on the five-point steneil, i —2<k <i +2, is given by
3io_h-,2 - é%hii"' Zh + ghi.1 — xhiio or equivalently (—hy_y + 7h; + 7hi.s — hiya) — &= (—hi o+ 4hi_; —
6h; +4h;.; — h;,,). If we choosew, =0.1, w; = 0.6, w, = 0.3, (2.2) becomes identical to this. These constant
are called optimal weights and are reflected in the numerators in the definitiapsoQf anda,.
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This can be rewritten in the form

1 _ _ _ _
hij1= 1_2(_hi—1 + 7hi + Thits — hiso) —on (AN g, ARy, Ahl+1, Ah, 12), (23)

2

WhereAﬁk+% = Hk+1 — ﬁk for any integek and

en(@ b, c d) = %wo(a—Zb—irC)—Ir}( w2 — —)(b 2c+d).

Now, to complete the description of the WENO approximation, we need to prescribe
weightswy andw,. They are chosen so that both properties (1) and (2) are attained.
detailed discussion of the selection is given in Jiang and Shu [14]. Using their choice,
definewy andw, by

oo o2
S Wy = —%2
oo+ o1+ a2 oo+ o1+ a2

1 6 3
€+1997 T T 152

ISy = 13(a — b)? 4 3(a — 3b)?, IS; = 13(b — ¢)%2 + 3(b + ¢)?,

wo =

oo =

IS; = 13(c — d)? + 3(3c — d)2.

Heree = 1078 is used to prevent the denominators from becoming zero. According to Jia
and Shu [14], the result is not sensitived@s long as it is in the range of 10to 10~'.
Notice thatyy is a nonlinear function becausg, w, are nonlinear functions d, b, c,
andd.
Similarly, from values oh, =h(x,) for k=i —1,i,i +1,i + 2, andi + 3, the WENO
approximation oh(x;;1/2) is given by
h

i+3

1
:12( hi_1+ 7hi + 7hiy1 — ,+2)+<pN(Ah,+s,Ah,+3,Ah|+1,Ah %). (2.4)

2.2. The WENO Scheme for Conservation Laws

In this subsection, we describe a finite difference version of the ENO/WENO scher
We start with the formulation for 1D, first for a scalar equation, and then for a system. Tt
we present the procedure for a system of conservation laws in 2D, whose extension tc
is obvious.

For a 1D scalar equation

U = — f (U)y, (2.5)

the scheme uses a conservative approximation to the spatial derivatives,

CUNEN(S

2

wherey; (t) is the numerical approximation to the point valug;, t) in a uniform grid and
the numerical flux
f,

i+ = f’\(ul ra-"yui+5)

Nl
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is requiredto be a Lipschitz continuous function in all the arguments and also to be consi
with the physical flux, ie.fu,...,u = f(u.

For achieving numerical stability and for avoiding entropy violating solutions, upwindi
and flux splitting approaches are used in constructing the flux. The flux is written as a
of the positive and negative fluxebE (u),

fauw= =W+ f ), (2.7)
where
df*(u)
qu = (2.8)
df~(u
g <O (2.9)

Thus for the equation; + f,- =0, the wave propagates in the increasirgjrection, while
for u; + f =0, it goes the other way. There are several choices for defining the flux
simple choice is given by the Lax—Friedrichs splitting, which produces very smooth flux

fEu) = %(f(u) + au), (2.10)

whereq is taken as may f’(u)| over the relevant range af If the range is locally defined,
it is called the local Lax—Friedrichs splitting; if the range is global, it is called the glok
Lax—Friedrichs splitting. For lower order schemes the quality of the solution is usually v
sensitive to the choice of the spltting, and the Lax—Friedrichs flux is very diffusive. But t
sensitivity is much less important for a higher-order method.

We then apply the WENO approximation procedure, as was given in Subsection 2.
fi(u) to obtain two numerical quxeé,H/z, and sum them up to obtain the numerical flu;
f.+1/2 The 5th-order WENO approximations, (2.3) and (2.4), give

. 1
fi++%=1_2( A TET 76, — £, — (pN(Afit%,Afit%,Afiié,Afii%) (2.11)
fi= 172(— o+ 78 + 7 — £ +on (Afi;g, Aty AT Afij%), (2.12)

whereAf'; ,= fi',; — f" and similarly for the negative flux components. Note that tr
idea of upwinding is applied heref1+1/2 is obtained from the five-point stencil flrfrom
i—2toi+2, andeJrl/2 is obtained from the five-point stencil férfromi — 1 toi + 3.
Adding togetherf " |+1/2 and f|+1/2 gives the numerical fluxf; 1,2, which depends on six
grid values at — i +3:

2

A 1
fi+% = 1—2(— fia+7Ffi +7fics— fio) —on (Afit%, Afit;, Afii%, Afii%)

+on (AT s ATy AL AT, (2.13)
This completes the spatial discretization procedure for a scalar equation according t

5th-order WENO scheme. The time evolution is provided by high-order accurate Run
Kutta schemes, which are presented at the end of the section.
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There are several ways to generalize the ENO/WENO schemes to systems of conserv
laws. Our choice is to use characteristic decomposition, which is more robust, but m
computationally intensive, than other simplerimplementations. The finite difference vers
of the ENO/WENO scheme again solves the system of conservation laws

Ui = —F(U)y, (2.14)
in the conservative form
du;(t) 1 /- N
dt Z_H( i+%_':i*%)’ (2.15)
whereU andF are vectors of then componentl = (ug, Uy, ..., Um) ", F(U) = (f1(U),
fo(U), ..., fm(U))T. Here we again assume the grid is uniform.

The characteristic decomposition procedure proceeds in the following way: Based
the values otJ; andU; 1, a mean JacobiaA; 1, is defined at the interfacg.q/,. For
the MHD code, we takeh; 1> to be the JacobiadF /dU of the system evaluated for
some average stat4 1,2, which is a function olJ; andU; 1. Their exact definitions are
given in Subsection 2.3. The eigenvalues of the mafrizorrespond to the wave speeds
of the system. As noted in the Introduction, although the eigenvalues in the MHD syst
can be degenerate, a complete set of eigenvectors can be found. Let us denote the
eigenvectors ofA by Rs and, correspondingly, the left eigenvectorshyfors=1, ..., m.
The right eigenvector is a column vector and the left eigenvector is a row vector, both w
m components. By proper normalizatidny, - Rs = &;s.

GivenRi ;12 andL; 17, the physical fluxes &=i — 2, ..., i 4 3 are projected into the
right eigenvector space,

m
Fo=) FR.: (2.16)
s=1

with F¢ = Li;1/2 - F«. The physical meaning of this step is that the system is decompos
into a set of locally independent linear equations. Now we use the technique in the sc
case to find the numerical fILI-?(iSJrl/2 ati + 3 for each component. The Lax—Friedrichs flux
splitting is used to separate the flux into positive and negative p?frﬂfs: (RS tasUg)/2.
Here,Ug = Li1/2 - Uk, representing the characteristic variable afids the maximum
value of thesth eigenvalue ofAk+%, either over the entire range &ffor the global flux
splitting orover(i — 2, ..., i + 3) for the local flux splitting. Thus, from (2.13), the WENO
approximation gives

. 1
By = o5 (Fa+ TR+ TR, — F) — o (AFing, AR, AfS, AFij_*g)
S— S— S— S—
+<pN(AFi+%,AFi+%,AFi+%,AFi_%).

From (2.16), we finally obtain the numerical flux as

~ 1
Fw% = 1—2(—Fi71+7Fi + 7F11— Fiy2)

i+3.]

m
s+ s+ s+ s+
+ 3 (—on(aFsh, AR AR AR, )
s=1

N (AFis«fg’ AR AR, AF-i)) R (2.17)
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Since for 2D and 3D, the conservative approximation to the derivative can be obta
in a dimension-by-dimension fashion, the scheme can be applied to 2D and 3D in a
ple manner. The following is the complete WENO scheme in 2-D. Let the uniform tw
dimensional lattice grid points b, yj) = (i AX, jAy) with 0 <i <Ny, 0<i <N, and
Ax=1/Ny, Ay=1/Ny. For a system of conservation laws

U=-FU)x—-GWU), 0<xy<l (2.18)

whereU = (Ug, Uz, ..., um) ", F(U) = (f1(U), f2U), ..., fu(U))T andG(U) = (g1 (U),
02(U), ..., gm(U))T, the semi-discrete 5th-order accurate WENO scheme is

du; ;) . _i(,\
dt AX

Fi+%,j - ﬁif%,j) - Aiy(éi’H% — éi,j*%) (2.19)

with F andG defined dimension-by-dimension as

1
Fies i = (0P + 7RG + TR — Faa))

m
+ 3 (e (LE-ARYS LD AR, LE AR, LD AR )
s=1

F s,— F S,— F s,— F s, — F
ton(LE-AFS, L LE AR, LE AR, LE-ARS, )IRE. (2.20)
HereFﬁ’ji = %(FH +a°U j), whereR ; = F (U j), is the positive/negative part of the flux
F at (x, y;). For the global Lax—Friedrichs flux splitting,” = max<p<n, |A;j| where
A%, is thesth eigenvalue of the Jacobiat/dU evaluated allp j. For the local Lax—
Friedrichs splitting, taker® = maXz<p<k+3 [A} ;- LE and RE are respectively, theth

left and right eigenvector of some mean JacolAap; » ; depending otJy ; andUy,q j.
Similarly, G is given by

1
Giki1 = TZ(_Gi,kfl + 7Gxk + 7Gj k+1 — Gjks2)

m
G S+ G S+ G S+ G S+
+ 3 (—on (LS AGH LS AGY LS AGH, . LE-AGT, )
s=1

+on (LS AGH 5. LS AGH 4, LE-AGY . LE-AG) L ))RE. (221)
The quantities are similarly defined, except that here they refer to thelix the y
direction.

In above, we have provided a WENO semi-discrete approximation, which is 5th-or
accurate in terms of local truncation error. Now we provide discretization for the result
set of ordinary differential equations for time evolution. We can obtain a 5th-order fu
discretized scheme if a 5th-order time discretization is used. However, because mc
the computational errors come from the spatial discretization, we have employed a 3r
4th-order accurate time evolution scheme. The Runge—Kutta schemes of Shu [25] fo
time discretization are used in this paper. Denote the right-hand side of (2.19Uas
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omitting the spatial indices; the third-order TVD Runge—Kutta scheme is simply
U® =U©@+AtL(UO),
U@ =u®4 4( BLU@)+L(UD)),

u® = U(2)~|—1;( LU@) —LU®)+8LU®)).

A useful 4th-order, but not TVD, Runge—Kutta scheme is

UL _ yo Azt LU®).

U@ =u® 4 Azt( LU@)+L(U®D)),

u® =u® 4 Azt( L(U®D) +2L(U®@)),

U@ =u® 4 AG(L(U‘O))—irZL(U(l)) 4AL(UP) +L(U®D)).

In all our numerical tests in Section 3, we have used the 4th-order Runge—Kutta schem
time evolution.

2.3. The Eigenvectors for the MHD Equations

We first present the eigen-system for the one-dimensional MHD system,
Ui = —FU)y (2.22)
with

U = (p, pvx, pvy, pvz, By, By, &) ", (2.23)
FU) = (IOUX7 ,va + p*, PUxVy — Bx BYa Puxvz — Bx Bz, vx By - vyBx,
veBz — v;By, vx(e + P*) — Be(vx By + vyBy + 1,B,)) . (2.24)
Here p* = p+ B2 ande = 3 pv? + B2+ p/(y — 1). Note that the subscripts fd, v,
and other similar variables refer to the components of the variables and do not indicate
spatial derivatives as in (2.22).

Let (bx. by, b)) = (Bx. By, B,)//p, b?=bZ +b7+bZ and b7 =bZ+bZ. The sound
speed and the Alen speed are, respectively,

vp
a= R Ca:|bx|-
P

The fast and slow speeds are given by

Cis= {%[a2+b2:|: \/(a2+b2)2—4a2b§}};.
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The eigen-system of (2.22) has extensively been studied; see, for example, Jeffre!
Taniuti [13]. However, the set of eigenvectors given there can be singular at the points w
the eigenvalues are degenerate. Brio and Wu [4] have given a proper choice of normaliz
that avoids these singularities and provides a complete set of eigenvectors. Their proc
is employed in this work. To this end, we define

(By.Br) if B2 2
+B2#£0,
/BZ+ B2 Yy z
(ﬁy, Bz) = ’ (2.25)
%, %2) otherwise
2 _ 2 2 _ a2
(v >y “) B2+ B2 #0o0ryp+# B2
(@f, as) = Vei-a (2.26)
(% %) otherwise
1 if By > 0,
sgn(By) = . (2-27)
-1 otherwise.

The eigenvalues are

A1,7 = Vx F Ct, A2,6 = Ux F Ca, A35 = Ux F Cs, Ag = Vx.

With the abbreviations,

y—1
J’lzT,
y —2
Vz—ﬁ,
y—1
T = 2

't = atCrux — asCs SQN(By) (Byvy + Bzv2),
s = Sgr(Bx)(,BzUy - ,Byvz),
I's = asCsvx + £ Ct SQN(Bx) (Byvy + Bzv2),

the corresponding left and right eigenvectors are given by

Li7= yasv? £ ¢, (L— p)agog Fascr, (1— y)asvy £ CsasPy SGN(By),

227 |
(1 — y)afv, + CsasB, SGN(By), (1 — y)at By — /paasPy,
(1—y)atB, — /paashs, (y — 1)0”),

RL = (af ;o (Ux F Cr), af vy £ CsarsBy SQN(Bx), &t vz & Csars Bz SQN(By),
aasPy ausf; [1

2 2 2
) 9af =V +C _)/Za:|:FFf),
NN f

2
(Fav 0, _ﬂz Sgr(BX)s /3y Sgr(BX)v :F\/EﬂZv :t\/;ﬂyv O)s

(=Y

Lo = >
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Ris = (0, 0, —B,sgn(Bx), By SN By), :F— L Py ra),
=0 g NN

1
L3s = @ (J/IOISU2 £ s, (1 — y)asvx F asCs, (1 — V)asvy + CfOIf,By sgn(By),

(1 — y)asvz F Crat B SgN(By), (1 — y)asBy — /paar By,
(1= y)asB, — /paai Bz, (y — 1)055),

R;Is = (“& as(vx F Cs), asvy F Croar By SQN(By), asv; F Croars B, SGN(By),

aafﬂy aat Bz

NN

1
Ly = (1 — érvz, TUx, TVy, TV, TBy, TB;, —7 |,

1
Rj = (1, Ux, Uy, 7, 0,0, E”Z)’

whereR" denotes the transpose of a column ve®or

In the actual implementation, the conditi@f + B # 0 in (2.25) and (2.26) is relaxed
to B + B7 > §B? with § being a small dimensionless constant, about'4Qikewise, the
conditiony p # B2 is relaxed tqy p — BZ| > 5y p.

To evaluateLs and Rs (s=1,2,...,7) at the half grid p0|nk+ 5, a state vector is
required there. We define this state as the arithmetic averaging of the values at the
neighboring grid point& andk + 1 for the density, the velocity, the magnetic field, and
the hydrodynamic pressure. Although it is possible to define the stlate étthrough Roe
averaging, tests show little differences whether a simple averaging or a Roe average is
for time-dependent problems. Fpr=2, a single Roe-average state can be obtained. |
the general situation, however, more than one average of the magnetic-field componer
necessary to achieve Roe-averaging [20].

For the 2D MHD system, which is (2.18) with

1
{v +C —yga} :FFS>,

U = (p, pvx, pvy, pvz, By, By, By, &', (2.28)
F(U) = (pvx, pvZ + p* — BE, pvxvy — ByBy, puxv, — ByBy, 0, ueBy — vy By,
VB, — v;By, vx(e + P*) — By(ve By + vyBy + v;,B,)) ", (2.29)
GU) = (,ovy, puyvx — By By, pvf, +p* — Bi, puyv; — By By, (2.30)
vy By — vy By, 0, vy B, — v, By,
vy (e + P*) — By(veBx + vyBy +1,B)) ", (2.31)

its eigen-system can be found by slightly modifying the eigen-system for the one-dim
sional MHD equations. First we notice the similarity between the fluxeand G. In
fact, G(U) = SF(SU) whereSis a “swap” matrix which swaps the 2nd component of a
vector with its 3rd component and at the same time, swaps the 5th component with the
component, i.e $3= So = S5= S5 =1 and the rest of entries are zero. This property ca
be used to find the eigen-system@from the eigen-system d¥.
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We have experimented with two sets of eigenvectors for the eigen-systenofe is a
direct extension of the one-dimensional system and the other is based on the modific
proposed by Powedt al. [20]. In the direct extension, we first notice that the 5th compone
of F is zero, which corresponds to the evolution equation forxkfmmponent of the
magnetic fieldBy. If we ignore this component, the rest is identical to the one-dimensiol
flux, in which caseBy is a constant. In this casef andRf (s=1, 2, ..., 7) can be obtained
in the same way as in the one-dimensional case. We call such an eigen-systesthe
eigen-system.

In the 8x 8 eigen-system of Powedit al.[20], the eigenvalues are

A18 = Vx F Ct, A27 = Vx F Cq, A36 = Ux F Cs, A4s = Ux.

Their corresponding eigenvectors can be obtained from th& @igen-system in a simple
manner. The lefteigenvectats g, L, 7, L3, andL 4 are obtained, respectively, by inserting
intoLy7, L2e, L3s, andL4 of the 7x 7 eigen-system a 5th component whose valueBg
multiplied by the last component of each left eigenvector. Similarly, the right eigenvect
Ris, Rz.7, Rss, and Ry are obtained, respectively, by adding a 5th component with n
value toR; 7, Ry 6, Rs 5, andRy of the 7x 7 eigen-system. In additiohs andRs are given

by
Ls = (0,0,0,0,1,0,0,0),
R =(0,0,0,0,1,0,0, By).

As in the 7x 7 eigen-system, the values bf andR; (s=1,2,...,8) at(k+ % j) are
obtained at the half-grid-point state, whose values are the arithmetic averaging of der
velocity, the magnetic field, and pressure at grid poikig) and(k + 1, j). Except for the
5th component, the ¥ 7 and 8x 8 eigen-systems give same numerical fluﬁgﬂs%,j . The
5th component can be nonzero in the 8 system and is zero in thex77 system.

3. NUMERICAL RESULTS

We present in this section the test results of the WENO MHD scheme for several (
dimensional and two-dimensional test problems. In all tests, we have used the 4th-c
Runge—Kutta scheme for time discretization and the global Lax—Friedrichs flux splitti
The time step size for one-dimensional problems is given dynamically by

0.8 AX

- eax (3.1)
max(|vx| + C¢)

where the maximum is taken over all computational grid points. For two-dimensional pr
lems, it is determined every time step by

At 0.8/ [max(|vx| +c%) N max(|vy| + c¥) | 32)

AX Ay

where the maxima are also taken over all computational grid points.d¢deredc’ are the
fast speeds in the- andy-direction, respectively. The CFL number is 0.8.



574 JIANG AND WU

3.1. One-Dimensional Riemann Problems

We solve the one-dimensional MHD equations (2.22)—(2.24) with the following tw
Riemann data, both drawn from [4]. The first Riemann problem is given by

(1.000 0, 0, 0, +1, 0, 1.0)  forx < O,

s ) ’ ’ B ’ B ’ =
(p-Vx: vy: vz: By. B P) {(0.125 0,0, 0 -1,0 01  forx >0,

with By =0.75, y = 2. Note that the hydrodynamic data are the same as the Sod'’s Riem:
problem [28]. This is the example used by Brio and Wu [3, 4] to show the formation of
compound wave in MHD.

We take the computational domain to bel], 1] with 800 points. The solution &&= 0.2 s
shown in Fig. 2, which includes, moving to the left, a fast rarefaction wave, an intermedi
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FIG. 2. The first Riemann problem of Brio and Wu with 800 grid points &t0.2. The symboFR denotes
a fast rarefaction waveSMis a compound wave (an intermediate shock followed by a slow rarefaction wave
C is a contact discontinuitySSis a slow shock.
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shock, which is attached by a slow rarefaction wave, and, moving to the right, a cor
discontinuity, a slow shock, and a fast rarefaction wave. The left-moving intermed
shock, which changeB, from 0.58 to—0.31, is of the type that its shock-frame flow spee
is sub-fast, super-Alenic, and super-slow upstream and sub-£ific, and equal to slow
speed downstream. Thus the intermediate shock is attached by the slow rarefaction
which changesBy from —0.31 to—0.53, and both form a compound wave. Across thi
compound wave, there is only one parameter to specify. Therefore we get a five parar
family of states which can be connected to the left state. Since there are five value
vx, vy, By, and p) to determine for the right state, the Riemann solution of this proble
is unique. In this example we are confined to a planar situation, wBetev, = 0, so the
intermediate shock structure is uniquely defined and multiple Riemann solutions mentic
in the Introduction do not occur. B, and/orv, are nonzero, then more than one Rieman
solution can occur [33].

The computed result agrees with the one obtained by Brio and Wu [4], who used a se
order TVD scheme. Since around shock waves and discontinuities, our code becomes
order accurate, just like their code, we do not expect any improvement in capturing tl
structures. Indeed, our result shows that there are 4 to 5 grid points within each sl
layer, which is comparable with theirs. For the rarefaction waves, our results also a
with theirs. Since the solution is so simple, our high-order code does not make any oby
change either. However, our result shows noticeable oscillations near the trailing edge
right-moving fast rarefaction wave, which may be caused by the high-order approximat
Such oscillations disappear when we compute the same problem in a moving frame.

This 1D Riemann problem is also solved in a 2D computational grid, serving as a tes
the 2D version of the code. A grid of 660600 points covering+1, 1] x [—1, 1] in the
(X, y) plane is used. In a 45otated coordinatéx’, y'), the Riemann data are prescribec
initially for X’ > 0 andx’ < 0 regions. Figure 3 shows the results of two calculations plott
along thex’ direction. Both computations use thex® eigen-system. The left-hand column
of the figure shows the results that include the additional step of enforcing th&g=0
condition as specified in the Introduction. A relaxation method is employed in solving
Poisson equation. The right-hand column contains results without this correction proce
Clearly the correction step plays an important role in these 2D calculations. The one*
the correction step agrees with the 1D results in Fig. 2. Without the correction, the re:
show spurious oscillations near the slow rarefaction wave within the compound wave.

The second Riemann problem is

(1.000 0O, 0, 0, +1, 0, 1000 for x <0,
(0, vx, Vy, vz, By, Bz, p) = {

(0.125 0, 0, 0, —1, 0, 0.10 for x > 0,
with By =0, y = 2. This problem is used to evaluate the code for high Mach number flc
The Mach number corresponding to the right-moving shock wave s lf'@ne replaces the
hydrodynamic pressure by the sum of the plasma and the magnetic pressures, this pr
becomes a standard hydrodynamical Riemann problem and thus the exact solution c
easily found. In addition, the equation f& is the same as the equation for the densit
Thus, By andp behave similarly to the left and to the right of the tangential discontinuit
where the jumps irBy and p are not related. We take the computational domain to |
[—1, 1] with 200 points. The solution &t=0.012 is shown in Fig. 4, with the exact solution
shown by a solid continuous line. The quality of the solution is again very similar to tha
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FIG. 3. The first Riemann problem of Brio and Wu computed in a 2D grid with §@D0 points at =0.2.
The left-hand column shows the results with the correction step of enforcing the conditWorBot 0, while the
right-hand column contains results without this step.

the TVD scheme. There are about 5 points within the strong shock and about seven pt
within the tangential discontinuity. Note that in our code, no artificial compression is us
to sharpen the tangential discontinuity.

3.2. Formation of Intermediate Shocks

Inthis example, we repeatthe calculation of Wu [32], that showed that intermediate sho
can be formed through nonlinear wave steepening from continuous waves, indicating
intermediate shocks are physical. As in [32], a slow simple wave solution is used as an in
condition. Initially By (x) = 0.5 sin(27 x) over 0< x < 1 with a periodic boundary condition.
The other quantitieso vx, vy, vz, Bz, andp) are numerically obtained by solving the simple
wave relationdU = Rs, with U given in (2.23) andRs, given in Subsection 2.3, the right-
eigenvector for the slow wave characteristic speeéd cs. All quantities are normalized
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FIG. 4. The second Riemann problem of Brio and Wu with 200 grid points=s.012.

with the following values aBy =0: By =1,p =1, p=1,vx = vy =v,=0,andB,=0. The
ratio of specific heaty =5/3 is used. In this one-dimensional probleBy, is a constant
and bothv, and B, vanish; it is a planar problem.

Figure 5 shows the andB, solutions at =0, 0.5, 0.6, and 1, which are obtained with
the new WENO code using 2560 grid points. These results agree with the results in |
where plots for other variables and results at later times can be found. Initially, the wan
compressive in the rangedb> x > 0 and 075> x > 0.5, where|By| decreases from 0.5
to 0 asp increases from 0.81 to 1. The wave is expansive in the other interval, A,
the slow wave and the intermediate wave are degenerate and also the system is non-c
there. Thus this calculation seems to be a good example to test the accuracy of the ¢
As the solution evolves, the characteristics in the compressive regions begin to cony
while those in the expansive regions spread. As shown in [32], a pair of slow shocks is
formed att ~0.54 atx ~0.13 and 063, whose characteristics can be traced back to t
initial location atx = 0.63 and 0.13, respectively, where the steepening rate is maximt
Thus prior tot ~ 0.54, the solution is smooth and the codes should attain their expec
accuracy. The evolution continues after the shock formation. The slow characteristics
eventually, the intermediate wave characteristics converge into the shocks: Btthe
shocks evolve into intermediate shocBg:changes its sign and jumps fror0.47 to 0.029
across the shock at~ 0.49 and from 0.47 t6-0.029 across the one &t~ 0.99. After
the shock formation, fast waves, the entropy wave, and the other slow wave (moving
vy — Cs) begin to form. These waves are not necessarily smooth. They travel through
periodic system and ultimately determine the order of accuracy of the calculation.
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FIG. 5. Formation of intermediate shocks: Plots@bnd B, att =0, 0.5, 0.6, and 1. Slow shocks are first
formed att ~ 0.54 and they evolve into intermediate shocks at 1.

In Table I, we show the errors of two schemes-at0.25. In addition to the new WENO
MHD scheme, we include a second scheme which uses a 3rd-order ENO scheme [27] (
order accurate in space and time). Both ENO and WENO share the same construction.
differences are in the choice of the flux and the order of the Runge—Kutta time integrati
For the WENO scheme, we have adjusted the time st to (Ax)%* so that the 4th-order
Runge—Kutta procedure in time is effectively 5th-order [14]. The errors are the deviatic
of B, away from its values computed with the WENO code using 2560 grid points. Tl
WENO scheme gives an order of accuracy of about 4.5 with 80—-320 grid points while 1
ENO scheme achieves an order of about 2.5.
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TABLE |
Accuracy on the Example in Subsection 3.2 at= 0.25 with a 5th-Order
WENO Scheme and a 3rd-Order ENO Scheme

Method N L, error L, order L., error L., order
WENO 10 2.8e-2 — 5.3e-2 —
20 5.3e-3 2.4 1.9e-2 1.5
40 5.1le-4 3.4 2.6e-3 2.9
80 2.8e-5 4.2 2.9e-4 3.2
160 1.2e-6 4.5 1.2e-5 4.6
320 4.3e-8 4.8 4.5e-7 4.7
ENO 10 3.0e-2 — 6.3e-2 —
20 8.0e-3 1.9 2.0e-2 1.7
40 1.3e-3 2.6 4.7e-3 2.1
80 2.2e-4 2.6 1.1e-3 2.1
160 3.8e-5 2.5 2.2e-4 2.3
320 7.8e-6 2.3 7.0e-5 1.7

In Table Il, the errors are shown &t 0.5, when the wave is highly steepened but stil
before the shock formation. Near the steepened regions, the codes are expected to |
accurate. The.; and L, errors confirm this trend. We expect bdth and L, to reach
their expected order of accuracy as the number of grid points is increased. Howevel
codes still obtain their expected accuracy in the region away from these steepened inte
as shown byL; errors, which are thé errors limited to the interval within.@ < x < 0.4.

The errors at = 0.6, after shocks are formed, are presented in Table Ill. Because of
shocks, thel; order is about 1 for both schemes. As the shocks are formed, other we
(including entropy, fast, and intermediate waves) are necessarily generated. In the r
that is not yet affected by these waves, high order of accuracy is maintained, as indicat
the L} errors which covers.G < x <0.4. By the timet =1 (Table 1V), these other waves

TABLE Il
Accuracy on the Example in Subsection 3.2 at= 0.5 with a 5th-Order
WENO Scheme and a 3rd-Order ENO Scheme

Method N L,error Ljorder Ljerror L;order L. error L, order

WENO 10 5.8e-2 — 2.6e-2 — 1.2e-1 —
20 1.8e-2 1.9 3.0e-3 3.1 6.4e-2 0.91
40 7.4e-3 13 3.2e-4 3.2 4.6e-2 0.48
80 2.6e-3 15 1.9e-5 4.1 3.8e-2 0.28
160 7.4e-4 1.8 6.7e-7 4.8 2.3e-2 0.72
320 1.6e-4 2.2 4.5e-9 7.2 7.6e-3 1.6
ENO 10 6.8e-2 — 2.2e-2 — 1l.4e-1 —_
20 2.2e-2 1.6 3.7e-3 2.6 6.8e-2 1.0
40 1.0e-2 11 7.6e-4 2.3 5.1le-2 0.42
80 4.0e-3 1.3 1.6e-4 2.2 3.9e-2 0.39
160 1.3e-3 1.6 2.7e-5 2.6 2.4e-2 0.70
320 3.5e-4 1.9 4.7e-6 2.5 1l.1e-2 11

Note. Ly andL ,, cover 0< x <1 while L} covers only @ <x <0.4.
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TABLE 11l
Accuracy on the Example in Subsection 3.2 at= 0.6 with a 5th-Order
WENO Scheme and a 3rd-Order ENO Scheme

Method N L, error L, order L3 error L7 order L., error
WENO 20 3.3e-2 — 4.5e-3 — 1.4e-1
40 1.4e-2 1.2 8.le-4 25 1.0e-1
80 5.1e-3 15 1.2e-4 2.8 7.9e-2
160 2.9e-3 0.81 5.4e-6 4.5 1l.le-1
320 1.4e-3 11 4.9e-7 3.5 8.6e-2
ENO 20 4.1e-2 — 1.4e-4 — 1.6e-1
40 1.8e-2 1.2 1.2e-3 — 1.1le-1
80 8.2e-3 11 4.0e-4 1.6 1l.1e-1
160 3.9e-3 1.1 1.0e-4 2.0 1l.le-1
320 1.8e-3 11 2.1e-5 2.3 8.6e-2

Note. Ly andL, cover 0<x <1 while L} covers only B < x < 0.4.

have traveled throughout the system. Theorder is again about 1. In the regions away
from the intermediate shocks, the solution is not exactly smooth because these other w:
though small in amplitude, are not necessarily smooth. This seems to explain the fact
the L3 order over the @ < x < 0.3 region drops to about 1 as thé¢ errors become small.
Although both WENO and ENO have similar orders of accurady=at, Fig. 6 shows that
WENO provides a better shock capturing capability than both ENO and a 2nd-order sche
by Liu and Lax [16]. The Liu-Lax scheme (labelled LL; 2nd-order accurate in space a
time) shares the same construction as WENO and ENO but has a different choice of
flux and the order of the Runge—Kutta time integration.

3.3. Two-Dimensional Kelvin—Helmholtz Instability

The Kelvin—Helmholtz instability can arise when two superposed fluids flow one ov
the other with a relative velocity. It occurs in many physical phenomena. As an example,
Kelvin—Helmholtz instability is considered as an important mechanism for the momentt

TABLE IV
Accuracy on the Example in Subsection 3.2 at=1 with a 5th-Order
WENO Scheme and a 3rd-Order ENO Scheme

Method N L, error L, order L3 error L3 order L. error
WENO 20 4.6e-2 — 7.8e-3 — 2.0e-1
40 2.2e-2 1.1 1.7e-3 2.2 1.7e-1
80 1.1e-2 1.0 4.1e-4 2.1 1.7e-1
160 3.1le-3 1.8 2.2e-4 0.9 8.8e-2
320 1.5e-3 1.0 1.1e-4 1.0 8.8e-2
ENO 20 5.9e-2 — 1.1le-2 — 2.4e-1
40 2.8e-2 1.1 3.5e-3 1.7 2.0e-1
80 1.3e-2 1.1 5.4e-4 2.7 1.7e-1
160 4.3e-3 1.6 2.1e-4 1.4 1.0e-1
320 2.1e-3 1.0 1.2e-4 0.8 1l.1e-1

Note. L, andL,, cover 0<x <1 while L} covers only  <x <0.3.
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FIG.6. TheB, distributions across an intermediate shock &t0.49 att = 1. The solid curve is obtained by
the WENO scheme with 2560 grid points. Results marke®by-, and< are obtained with 80 grid points from
the WENO code, the 3rd-order ENO code, and the 2nd-order Liu-Lax scheme, respectively.

transfer at the Earth’s magnetopause boundary, which separates the solar wind flow
the Earth’s magnetosphere. Here we apply the WENO scheme to the two-dimens
periodic model and convective model with transverse magnetic field configuration. |
convective model, the excitation has a finite convective velocity. See [31] and its referel
for details.

The governing equations are the two-dimensional MHD system (2.18), (2.28)—(2.
The initial stationary configuration of the periodic model is givendgy= 1, vxg = (vo/2)
tanh(y/a), vy, =v20=0, Bxo = By, =0, B;o =1, andpo = 0.5, wherea denotes the width
ofthe velocity shear layer. At= 0, a small perturbation of the following formis introduced:

~ i 2 H A A
o — { vosinrx/1) /(1 + y9), if —5 < X <3, (33)
0, otherwise.

The computational domain is{5, 5] x [0, H]. We have usedo =2, 7o =0.008,L = =
57, H=10,a=1, andy = 2. The periodic boundary condition is used in thdirection.
The free outflow condition is applied at the top boundary atH. Here we only compute
half of the flow, the other half, frony=—H to y=0, can be obtained by symmetry
conditions that under the transformation> —x, p, p, and B, are symmetric andy and
vy are antisymmetric [31]. We have used two grids in the calculations: one ha8@§rid
points and the other has 9660 grid points. The grids are stretched in thdirection with

a Roberts transformation

H sinh(ry/2H)

sinh(t/2) (3.4)

with T = 6. This transform renders a denser grid ngar0, where much of the action is
taking place and a coarser grid nga= H, where little is happening. The time evolution
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FIG.7. Time evolution of the total transverse kinetic energy integrated evey2, L /2] x [—H, H] for both
periodic and convective Kelvin—Helmholtz instability. The results from the periodic systems witt8a@gyrid
points and with 96« 60 grid points are shown by a dashed curve and a dotted curve, respectively. The convec
system is given in a solid curve. For 2a < 50, the transverse kinetic energy grows l&¢ with y, the linear
growth rate, equal to.09.

of the total transverse kinetic energy integrated ovesr/2, 57/2] x [—10, 10] for both
grids is shown in Fig. 7. The two calculations show almost identical growth. In Fig. 8, v
show the flow components at= 144. The calculation with the fine grid clearly captures
the weak shock near the left boundary while, as expected, the shock has a greater sj
in the coarse-grid run. The shock forms because of the creation of the vortex flow. To
flow outside the vortex, the situation is similar to the flow over an airfoil in aerodynamic
where shock waves can be generated off the airfoil.

For the convective model, we assume the same initial profile as in the periodic model.
using the velocity profile ofxq = (vo/2) tanh(y/a), we carry out the calculation in a frame
that moves with the excitation of the instability. However, in contrast to the periodic mod
the convective model does not impose the periodic boundary condition direction.
Instead, a large computational domain> 1) is employed to allow the excitation to
convect freely. With a sufficiently large value bf no disturbance can reach the boundarie:
atx ==L /2 during the course of the calculation. Since the size of vortices formed in t
convective system is larger than that of the periodic model, the computational domait
they direction is also increased. As in [31], we use=11\. =557, H =20, anda=1.
The initial excitation is imposed in the regioA(1/2) < X < (1/2) given by (3.3) with
7o=0.008. A grid of 528x 48 points, with the same grid transform in thedirection as
thatin (3.4), is used to achieve comparable resolution with that of the periodic system. "
time evolution of the transverse kinetic energy is shown in Fig. 7. As in [31], we obser
that the transverse kinetic energy continues to grow long after the saturation for the peri
system. We also observe the formation of large vortices, whose size can be nearly two ti
larger than the initial perturbation wave-length. The shocks formed off these vortices
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FIG. 8. Kelvin—-Helmholtz instability in a periodic system. The left-hand column uses 38 points and the
right-hand column uses 9660 points. There are 20 contours for density and pressure and the gray colorr
means that the lighter color area has a greater value. The density range is from 0.79 to 1.2, the pressure r
from 0.31 to 0.72, and the maximum value for the velocity is 1.26.

much stronger than that found in the periodic system. The flow components1#0 and
t =145 are shown, respectively, in Figs. 9 and 10. The gross feature in this calculatic
similar to that in [31].

In these calculations, the component$gf By, andv, are always zero and the evolution
of B, follows closely with that of the density. By defining the pressure tphéhese MHD
calculations are identical to the Euler calculations. Therefore, the differences betweel
periodic model and the convective model are also valid in the Euler system. For tt
calculations, results do not depend on whether theB8eigen-system or the > 7 eigen-
system is used.

Because of its high-order accuracy, the WENO scheme achieves an accuracy comp:
with the results of [31], which uses the usual two-step Lax—Wendroff scheme, with m
fewer grid points, and with no spurious oscillations. Table V shows a comparison am
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FIG. 9. The convective Kelvin—Helmholtz instability tit= 120. There are 20 contours drawn for density and
pressure. The gray scale indicates that the lighter color area has a greater value. The density range is from C
1.3, the pressure range is from 0.19 to 0.85, and the maximum value of the velocity is 1.53.

several numerical schemes for the periodic model with a uniform grid in botk-thad
y-directions over the computational domain of §&] x [—10, 10]. The first set of calcula-
tions is conducted with the 5th-order WENO scheme with various numbers of grid poir
A second set (labelled LW1) uses the usual two-step Lax—Wendroff method. For each |
we list the maximum transverse kinetic enefgjyattained and the time when it occurs. For
the WENO code, the calculation with the Q00 grid is already very accurate, reaching
about 97% of the saturated kinetic energy. Since the solution is more complicated in
y-direction than in thex-direction, one requires more grid points in thelirection than in
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FIG. 10. The convective Kelvin—Helmholtz instability &t= 145. There are 20 contours drawn for density
and pressure. The gray scale indicates that the lighter color area has a greater value. The density range
0.46 to 1.3, the pressure range is from 0.12 to 0.86, and the maximum value of the velocity is 1.89.

the x-direction. The convergence of the solution is demonstrated in Fig. 11, which sh
the time evolution of the transverse kinetic energy from the WENO code with 8@
50x 100, 75x 150, and 100« 200 grids.

However, the LW1 code does poorly in simulating the Kelvin—Helmholtz instability. Wi
a 50x 100 grid, it only reaches about 3% of the converged value. It requires more t
100x 600 to attain the 93% level. One main reason is that although the initial configura
is an equilibrium state, it cannot be maintained when dissipation terms, either physic:
numerical, are present. Therefore, the Lax—Wendroff scheme, which has larger nume
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TABLE V
Calculations of the Periodic Kelvin—Helmholtz Instability on Various Grids with a 5th-Order
WENO Scheme, the Lax—Wendroff Codes folU (LW1) and for U (LW2), a 3rd-Order ENO
Scheme, and a 2nd-Order Liu—Lax Scheme (LL)

Code N, x N, Er T N, x N, Er T

WENO 30x 60 2.283 102.0 4080 3.365 82.6
50 x 100 3.584 80.7 8& 100 3.598 80.8

50 x 150 3.676 78.4 88 150 3.689 78.4

75x 150 3.689 78.5 108 200 3.703 77.9

Lw1 50x 100 0.12 79.3 10& 200 0.38 80.6
100x 300 2.88 79.1 106 400 3.23 75.8

150% 400 3.23 79.3 106 600 3.43 78.2

Lw2 50x 100 2.65 77.3 5& 200 2.99 78.1
100% 200 3.35 78.5 208 200 3.57 77.5

ENO 40x 80 3.014 87.5 5& 100 3.342 81.1
75x 150 3.585 79.0 108 200 3.648 78.0

LL 50 x 100 1.32 78.8 10& 200 2.47 64.0
200x 400 3.04 71.8 10& 600 3.02 75.5

Note.The saturated (maximum) total transverse kinetic endggyifitegrated over{ 57 /2, 57 /2] x [—10, 10],
and the time it occursl() are shown for each run.

dissipation terms than the 5th WENO scheme, tends to smooth out more the initial sh
flow profile. As aresult, the computed growth of the Kelvin—Helmholtz instability is smalle
and the saturated energy level is lower. One can remedy this situation by Salv'ﬁiwgsad

of U in terms oth = (U —Up)t =—(F — Fo)x — (G — Gp)y, where the quantities with
subscript O refer to the initial conditions. Therefddeis zero if there is no perturbation and
the initial Up profile is kept. This method was employed in [31]. The third set of the rur

60 70 80
!

FIG. 11. Time evolution of the total transverse kinetic energy integrated over/2, L/2] x [—H, H] for
periodic Kelvin—Helmholtz instability fromt =55 tot =85. The results from 48 80, 50x 100, 75x 150, and
100x 200 grids are plotted as dotted, dashdot, dashed, and solid curves, respectively.
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(labelled LW?2) in Table V was carried out in this way using the two-step Lax—\Wendr:
scheme. The result shows that they improve greatly over the second set and witk 2200
grid, they achieve about the same energy level as the WENO scheme witlx 4080
grid.

The nexttwo sets use a 3rd-order ENO scheme [27] and a 2nd-order Liu—-Lax scheme
As expected, for being a 3rd-order accurate rather than a 5th-order accurate as WEN(
ENO scheme requires more grid points than WENO to achieve the same saturation |
The ENO result on a 7% 150 grid is about the same as the WENO result on & 300
grid. The LL scheme is better than LW1 but is not as accurate as LW2. By filing
with the expressiorEr = Et +a(Ax)", with constantEr,, anda, for the results on
40x 80, 50x 100, 75x 150, and 100 200 grids, we obtaim~ 4.6 and 28 for WENO
and ENO, respectively. For the WENO scheme, the expredsioa 3.707— 25(Ax)*6
givesEt = 3.368, 3.585, 3.688, and 3.702, for 480, 50x 100, 75x 150, and 106« 200
grids, respectively. These valueskEf agree with those values listed in Table V. Similarly
the expressiofET = 3.707— 9.6(Ax)?8 gives a reasonable fit for the ENO results. We hav
also compared the total transverse kinetic energy at a fixedttimnés. For the WENO
scheme, the values of the transverse kinetic energy are 2.69, 3.12, 3.51, and 3.58 ¢
respective 4& 80, 50x 100, 75x 150, and 1006« 200 grids. The order of accuracy is abou
4.2. These figures are consistent with the order of accuracy of these schemes and agre
the numerical experiments of Shu and Osher [27] and Jiang and Shu [14].

A higher-order accurate code generally requires more operations than a lower-c
accurate code. By counting the number of operations, we can estimate that the com
time per grid-point update is increased by a factor of about 4 from the 2nd-order L
Lax scheme to the 5th-order WENO scheme. A factor of 2 comes from the increas
the number of steps in the Runge—Kutta time integration, and a factor of 2 is from
computation of the flux. Similarly, the increase from a 3rd-order ENO to the 5th-or
WENQO is a factor of about 2. These increases do not depend on the dimensionality. T
factors are observed on serial workstations. However, on a vector computer such a
CRAY T90, the 5th-order WENO scheme can be faster than a 3rd-order ENO bec:
fewer IF statements are used in WENO than in ENO [14]. Of course a 2nd-order L
Wendroff scheme, which uses no wave decomposition, is faster than WENO by a fact
more than 100.

We note that the comparison in Table V depends on the physical problems. But e
assume that its result can be extended to some 3D problems and one can achieve the
accuracy with 50 grid points in each direction using the 5th-order WENO code, with
grid points using the 3rd-order ENO code, and with 150 points using the 2nd-order Liu—
code. Then ENO and Liu-Lax codes require 50 and 300%, respectively, more time <
than the WENO code. Therefore, despite the fact that the WENO scheme requires |
operations per grid-point update, the WENO scheme is the most efficient among the t
The ENO scheme needs 2.5 times more CPU time than the WENO scheme and the Liu
scheme requires 20 times more than the WENO scheme.

3.4. Orszag—Tang MHD Turbulence Problem

In this section, we consider the evolution of a compressible Orszag—Tang vortex
tem [18]. The problem contains many significant features of MHD turbulence and has t
extensively studied by Dahlurg and Picone [6] and Picone and Dahlburg [19]. Because
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complex evolution, which involves the interactions between several shock waves gener
as the vortex system evolves, it has also been used as a test problem for numerical cod
Zacharyet al. [36] and by de Fainchteiat al. [10]. Our initial setup is identical to that of
Zacharyet al. with the initial data

p(X,y,0) =2, u(X, y, 0) = —siny, vy(X, Y, 0) = sinx,

PX,y,0 =y,  Bx(X,y,0)=-—siny,  By(X,y,0) =sinX,

wherey =5/3. Thus, initially, the root mean square (rms) values of velocity and the ma
netic field are both 1; the initial average Mach number is 1 and the average plasma be
10/3. The computational domain is,[@r] x [0, 2] with periodic boundary conditions in
both thex- andy-directions. As in the calculations of Zachastal., we used a uniform
192x 192 grid.

The calculations were performed with both the 7 eigen-system and thex88 eigen-
system, each with or without the correction step for enforcing the divergence-free condit
for the magnetic field. The Poisson equation for the potegtiad again solved using a
relaxation method. Without the correction procedure, the calculations with eithextfie 7
system orthe & 8 system become numerically unstable when the pressure turns to negat
It occurs at ~ 3.9 using the 8« 8 eigen-system and it~ 2.5 using the % 7 eigen-system.

A plausible explanation for the difference is that the 7 system has no diffusion terms
for the flux corresponding to thg, (By) component in the (y) direction. By adding some
diffusion to the corresponding equations, such as a 4th-order diffusion to the evolut
equation forB, and a similar term for the evolution equation®yf, we can bring the code
with the 7x 7 eigen-system up to the level of thex8 system. However, these additional
diffusion terms are not needed when the correction procedure for enhancivig the- 0
condition is employed.

With the addition of the correction procedure, botk 7 and 8x 8 systems are numerical
stable and give almost the same results. We have successfully run both t§B8tdrhis
is another demonstration that the divergence-free condition for the magnetic field play:
important role in the MHD calculations. The results using WENO with the8eigen-
system are shown in Figs. 12, 13, and 14tfer0.5, 2, and 3, respectively. Tables VI and
VIl show the errors of the code &t=0.2 and 0.5, respectively. The errors are defined a
the deviations of the density from its value obtained on a:6522 grid. For both cases
high order of accuracy is achieved starting with a6@4 grid. For the case at=0.5, the
errors are larger because of the high gradients in the solution (Fig. 12).

TABLE VI
Accuracy on the Orszag—Tang Vortex Problem at = 0.2 Using
the 5th-Order WENO Scheme withN x N Grid Points

N L, error L, order L. error L., order
16 1.8e-2 — 6.6e-2 —
32 3.5e-3 2.4 1.2e-2 2.5
64 2.8e-4 3.6 1.3e-3 3.2
128 1.4e-5 4.3 2.2e-4 2.6

256 6.8e-7 4.4 5.9e-6 5.2
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TABLE VII
Accuracy on the Orszag—Tang Vortex Problem at = 0.5 Using the 5th-Order
WENO Scheme withN x N Grid Points

N L, error L, order L3 error L3 order L. error L., order
16 7.9e-2 — 2.6e-2 — 1.2 —
32 1.3e-2 2.6 8.3e-3 1.6 3.4e-1 1.8
64 1.2e-3 3.4 6.1e-4 3.8 2.6e-2 3.7
128 1.4e-4 3.1 3.4e-5 4.2 5.0e-3 2.4
256 2.3e-5 2.6 4.4e-6 3.0 4.9e-4 3.4

Note. Ly and L, cover the whole computational domain whil¢ covers only the region
within 0.97 <x <117 and Q97 <y < 1.1x.
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FIG. 12. The Orszag—Tang MHD turbulence problem with a uniform 992 grid att =0.5. The 8x 8
eigen-system is used. There are 12 contours for both density and pressure. The gray scale means that the
color area has a larger value. The rangedas from 21 to 58 and it is from 10 to 58 for p. The maximum
values ofjv| and|B| are 1.6 and 1.6, respectively.
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3m/2 2n 0 w2 3n/2 n

FIG. 13. The Orszag—Tang MHD turbulence problem with a uniform %992 grid att =2. The 8x 8
eigen-system is used. There are 12 contours for both density and pressure. The gray scale means that the b
color area has a larger value. The rangedas from 064 to 62 and it is from 014 to 69 for p. The maximum
values ofjy| and|B| are 1.6 and 2.8, respectively.

The results at =3 agree with the one given by Zachaey al. [36]. It is seen that
the evolution of the system is very complex and many shocks of all kinds are form
For instance, in Fig. 13, an intermediate shock is formed at the shock front(from
~ (3 /2,0)to (;r, 3w /4). Across this shock wave, the transverse component of the magne
field changes its sign, which is a property of an intermediate shock. On the other hand
fast and slow shocks, the transverse component does not change sign and its magr
increases from upstream to downstream for fast shocks and decreases for slow shocl
Fig. 14, the shock front fronx, y) ~ (37 /2, = /2) to (57 /4, 37 /4) is a fast shock and the
front from (x, y) ~ (&, 37 /4) to (r /2, ) is a slow shock.

Figure 15 plots the pressure distributions along a cut-at0.6257 for the results at
t =3. Shown are results from three calculations: one with tke88system without the
correction step, one with the>88 system with the correction procedure, and one with th
7 x 7 system with the correction step. The two that include the correction procedure prov
similar results. It tends to be more oscillatory whentheB = 0 condition is not enforced;
although all three results are consistent with each other at this time.
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FIG. 14. The Orszag-Tang MHD turbulence problem with a uniform %992 grid att =3. The 8x 8
eigen-system is used. There are 12 contours for both density and pressure. The gray scale means that the
color area has a larger value. The rangedas from 11 to 6.2 and it is from 036 to 63 for p. The maximum
values ofjy| and|B| are 1.7 and 3.0, respectively.

4. CONCLUSIONS

In this paper we have presented a 5th-order WENO finite difference scheme for i
MHD. Its application from hydrodynamic problems to MHD is straightforward, althouc
the MHD code requires considerably more work than the Euler code because of the
plexity associated with the MHD eigen-system. As in the Euler code, characteristic w
decomposition and flux splitting are used in the MHD code. The same WENO approxi
tion for the fluxes at the interfaces is also employed. Also, the extension to multi-sp:
dimensions is carried out by calculating the flux dimension-by-dimension. For both Ei
and MHD codes, there is arestriction on the grid. The finite difference ENO/WENO sche
of third- or higher-order accuracy can only apply to a uniform grid or a smoothly varyi
grid.

The numerical tests show that the new MHD codes are robust and capture shock:
rarefaction waves well. The tests also indicate the importance of enforcing the diverg
free condition for the magnetic field. It helps to maintain the numerical stability.
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FIG. 15. The pressure distributions along a cutyat 0.6257 for the results of the Orszag—Tang MHD
turbulence problem dt=3. Shown are results from three calculations: one with tkeB8system without the
correction step (dotted curve), one with the 8 system and with the correction procedure (marked withand
one with the 7 7 system and with the correction step (solid curve).

There is a clear advantage of using the higher-order scheme. In a 2D test problem fo
Kelvin—Helmholtz instability, the 5th-order WENO code can attain same accuracy as
2nd-order schemes with fewer grid points, which is an important consideration for thr
dimensional simulations. Although the 5th-order WENO scheme requires more operati
per grid-point update, it may actually use much less CPU time than a 2nd-order upw
code with wave decomposition in the overall calculation. The main benefit, however, is
feasibility of running a very large large-scale simulation with the 5th-order WENO schen
For instance, it is possible to run a 508ystem with the WENO scheme on a currently
available large computer system, but it will require additional computational work to rur
150@ system with the 2nd-order scheme.

Because of its small numerical dissipation, the high-order accurate WENO code may
very useful in simulating physical problems where small physical dissipation is require
For example, it may be useful in the 3D MHD model of the Earth’s magnetosphere; see, ¢
[30]. The interaction of the solar wind with the geomagnetic field results in the formatic
of a bow shock and a magnetopause. The magnetopause is an interface between the
netosheath and the magnetosphere. Since there are both magnetic shear and flow
across this boundary, the magnetic reconnection process and Kelvin—Helmholtz instz
ity may operate there. However, because of large numerical diffusion terms, reconnec
processes overwhelm the magnetospheric dynamics in most current global models. U
a higher-order scheme may help to reduce the dissipation terms and thus help to realiz
Kelvin—Helmholtz instability in a 3D model.

In sum, we believe that there are uses of higher-order schemes. But we certainly dc
exclude any 2nd-order or 1st-order schemes, which can be quite efficientin 1D calculati
or any adaptive codes, which are not included in our comparison. We should also note
the efficiency comparison definitely depends on the physical problems. Lower-order co
may be more efficient than higher-order codes in some problems. In addition, to achi
a high-order accuracy, high-order accurate boundary conditions are required. This |
require more work for some calculations.
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As mentioned in the Introduction, when the rotation of the magnetic field exists,
evolution of the MHD system may depend on the dissipation mechanism, which accor
to the Navier—Stokes MHD equations, includes bulk and shear viscosities, resistivity,
heat conductivity. Since no explicit diffusion terms are included in the code, the solut
may thus depend on numerical dissipation. The situation may be corrected in our fu
code improvement by using the WENO shock capturing scheme for the fast and slow st
and by resolving the shock structure for the intermediate shock.
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