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We present a high-order accurate weighted essentially non-oscillatory (WENO)
finite difference scheme for solving the equations of ideal magnetohydrodynamics
(MHD). This scheme is a direct extension of a WENO scheme, which has been
successfully applied to hydrodynamic problems. The WENO scheme follows the
same idea of an essentially non-oscillatory (ENO) scheme with an advantage of
achieving higher-order accuracy with fewer computations. Both ENO and WENO
can be easily applied to two and three spatial dimensions by evaluating the fluxes
dimension-by-dimension. Details of the WENO scheme as well as the construction
of a suitable eigen-system, which can properly decompose various families of MHD
waves and handle the degenerate situations, are presented. Numerical results are
shown to perform well for the one-dimensional Brio–Wu Riemann problems, the
two-dimensional Kelvin–Helmholtz instability problems, and the two-dimensional
Orszag–Tang MHD vortex system. They also demonstrate the importance of main-
taining the divergence free condition for the magnetic field in achieving numerical
stability. The tests also show the advantages of using the higher-order scheme. The
new 5th-order WENO MHD code can attain an accuracy comparable with that of the
second-order schemes with many fewer grid points.c© 1999 Academic Press
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1. INTRODUCTION

In this paper, a high-order accurate weighted essentially non-oscillatory (WENO) finite
difference scheme is presented for solving the ideal magnetohydrodynamics (MHD)
equations

ρt = −∇ · (ρv), (1.1)
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(ρv)t = −∇ ·
[
ρvv+ I

↔
(

p+ 1

2
B2

)
− BB

]
, (1.2)

Bt = ∇ × (v× B), (1.3)

εt = −∇ ·
[(

γ

γ − 1
p+ 1

2
ρv2

)
v− (v× B)× B

]
. (1.4)

Hereρ, p, v, B, andε denote the mass density, the hydrodynamic pressure, the velocity
field, the magnetic field, and the total energy, respectively. The ratio of the specific heats is
given byγ andε= 1

2ρv
2+ 1

2 B2+ p/(γ − 1). In addition to these equations, the magnetic
field satisfies the divergence free condition,∇ · B= 0.

The WENO schemes are based on the essentially non-oscillatory (ENO) schemes, which
were first developed by Hartenet al.[12] in the form of finite volume schemes and were later
improved by Shu and Osher [27] into a more efficient and easy-to-implement finite differ-
ence form. The ENO schemes are generalizations of the total variation diminishing (TVD)
schemes of Harten [11]. The TVD schemes typically degenerate to first-order accuracy at
locations with smooth extrema while the ENO schemes maintain high-order accuracy there
even in multi-spatial dimensions. Despite their high-order accuracy, ENO schemes are as
capable as TVD schemes in suppressing spurious oscillations in the numerical solution.

The key idea of the ENO schemes is to use the smoothest stencil among several candidates
to approximate the fluxes at the cell boundaries to high order and at the same time to avoid
spurious oscillations near shocks and discontinuities. The WENO schemes go one step
further by taking a weighted average of all candidates. The weights are adjusted by the
local smoothness of the solution so that essentially zero weights are given to non-smooth
stencils while optimal weights are prescribed in smooth regions. Around the discontinuities,
WENO schemes behave similarly to ENO schemes, but in the smooth regions of the solution,
WENO schemes act more like an upstream centered scheme. In principle, anyr th order
accurate ENO scheme can be “converted” to a(2r − 1)st order accurate WENO scheme.

The first version of WENO schemes was developed by Liuet al. [17] in finite volume
formulation for one-dimensional conservation laws. Later, Jiang and Shu [14] presented a
finite difference version of WENO schemes for multidimensional conservation laws and also
optimized the accuracy of the scheme with a new weighting procedure. The finite difference
WENO scheme, which has been extensively tested on multidimensional hydrodynamic
problems [14, 35], is applied here for the MHD code.

As in many other modern shock capturing methods, our WENO scheme is based on the
local characteristic decomposition of waves. The fluxes are first separated into each family
of waves. Then they are split into positive and negative parts by either global or local Lax–
Friedrichs flux splitting. Subsequently, the fluxes at the cell boundaries are constructed by
the WENO approximation.

Because of the wave decomposition procedure, considerable work is required to evaluate
the MHD eigensystem. There are seven waves in the MHD system. In addition to the en-
tropy wave, which propagates with the fluid speed,v, there are three wave modes, which can
propagate with twov± c speeds, wherec denotes the characteristic speed of the mode. Ac-
cording to the magnitude of the wave speeds, these three modes are called fast, intermediate
(Alfv én), and slow waves. The fast and slow waves are compressive, while the interme-
diate wave is not. Depending on the direction and the magnitude of the magnetic field,
these wave speeds may coincide. Thus the MHD equations form a non-strictly hyperbolic
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system. In spite of this, a complete set of eigenvectors can be found and, with proper
normalizations, they are well-defined [4, 22].

The jump relations of the MHD system are equally complicated. There are six entropy-
satisfying shock jump relations. Two are fast and slow shocks. The other four transitions are
called intermediate shocks. For a fast shock, there is a pair of converging fast waves into the
shock. Similarly, there is a pair of slow waves converging into a slow shock. For one type of
intermediate shock, one has a pair of converging intermediate waves. The other three types
of intermediate shocks are over-compressive, which can have converging fast waves, or
slow waves, or both, in addition to intermediate waves. There are limiting cases when one
of the converging characteristics has the same speed as the shock. Thus compound waves,
where a shock is attached by a rarefaction wave or a rarefaction wave is attached by a shock,
can be formed, as was first observed by Brio and Wu [3, 4]. Besides the shock waves, there
are other discontinuities in the MHD Rankine–Hugoniot relations. They include contact
discontinuity, tangential discontinuity, and rotational discontinuity.

Since the MHD system is not genuinely nonlinear [3, 4], one may question the validity
of using shock capturing schemes for its calculations. Indeed, in a series of numerical
and analytical studies [33, 34, 15], it is shown that whenever a rotation of the magnetic
field occurs, the evolution of the MHD system may depend on the dissipation mechanism,
which according to the Navier–Stokes MHD equations, includes bulk and shear viscosities,
resistivity, and heat conductivity. Thus two different shock capturing schemes with different
numerical dissipation terms can produce two different solutions. Furthermore, a capturing
scheme may not lead to convergent results as the sizes of the time step and the grid spacing
are refined because the numerical dissipation terms may change in the process. The situation
stems from the fact that the shock structure of intermediate shocks is generally not unique.
Our new code, which is a shock capturing scheme, has the same drawback. We envision
that one can correct the situation by selectively in the computation including the dissipative
terms for resolving intermediate shock structures.

Another numerical issue in the MHD calculation concerns the condition of∇ · B= 0.
While this condition is formally ensured if it is satisfied by the initial data, the numerical
truncation errors can lead to nonzero value. Since our code is of high-order accuracy in
the smooth region, the errors in this condition should be small and should vanish in the
limiting sense. However, across a discontinuity, the truncation error is of first order and
the problem can be serious. This issue has been considered by many authors and several
remedies have been tried [2, 36, 24, 20, 5, 9, 8]. We have experimented with a scheme that
enforces the condition by a correction method [2, 36, 24]. First we solve for the potential
φ for the Poisson equation,∇2φ+∇ · B= 0, with B the updated magnetic field obtained
by the WENO scheme. Then we compute the corrected magnetic field asBc=B+∇φ, for
which∇ · Bc= 0.

In the last decade, several schemes, which share some common aspects with our scheme,
have been developed for the MHD equations. In 1988, Brio and Wu [4] presented the
first second-order upwind TVD scheme for one spatial dimension where they success-
fully constructed a Roe matrix [21] for the MHD equations in the case ofγ = 2. De-
generacies of the eigen-system were treated by them with proper normalization to re-
move singularities that can occur. Later, the scheme was extended to multidimensional
flow by Ryu et al. [23, 24] and by Tanaka [29]. Aslan [1] also followed the idea of
the Roe scheme to construct a second-order upwind MHD scheme by a fluctuation ap-
proach. Another interesting upwind scheme was developed by Powellet al. [20] following
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the same line of the Roe scheme [21]. They also proposed an eight-wave family eigen-
system instead of the usual seven-wave family eigen-system. Their method will be em-
ployed in constructing our 8× 8 eigen-system. Zacharyet al. [36] applied an operator
splitting technique and devised a high order Godunov type scheme. Recently, Dai and
Woodward [7] proposed an approximate Riemann solver for obtaining numerical fluxes
at cell interface. They have incorporated artificial viscosity to handle strong shocks. All
the schemes mentioned above have been successfully applied to multidimensional MHD
equations.

We have developed a set of 5th-order accurate semi-discrete WENO MHD codes in one,
two, and three spatial dimensions. The application to higher spatial dimensions is achieved
by computing the fluxes dimension-by-dimension. The 4th-order Runge–Kutta scheme of
Shu [25] is used for the time evolution. The new MHD codes do well in calculating the solu-
tions of one-dimensional MHD Riemann problems and the two-dimensional evolution of the
Kelvin–Helmholtz instability in a magnetized system. They have also provided solutions
for the Orszag–Tang turbulence model [18]. The numerical tests show that maintaining
the divergence-free condition for the magnetic field is important in achieving numerical
stability. They also show the advantages of using the higher-order scheme.

The outline of the paper is as follows: In Section 2, we define the WENO scheme and
present the eigen-systems for the MHD equations. The numerical results are presented in
Section 3. Some remarks are made in Section 4.

2. THE NUMERICAL METHOD

Since the formulation of the ENO scheme in the finite volume form by Hartenet al.[12],
there have been many improvements in the methodology. In this paper, a finite difference
version of Shu and Osher [27], with its extension to the WENO idea by Jiang and Shu [14],
is applied to the MHD code. The finite difference formulation, which is based on point
values, has proved to be more computationally efficient than the finite volume scheme.
The method can be generalized in a straightforward manner to multi-spatial dimensions. A
detailed account of the construction, analysis, and application of ENO/WENO schemes is
recently provided by Shu [26]. In this section, we define the scheme we use in the paper,
including the choice of flux splitting and the characteristic decomposition.

We first describe the basic idea of the WENO scheme which involves the computation
of the cell-interface values of an one-dimensional function from its cell averages at the
neighboring cells. We then present the WENO scheme for conservation laws. In the last
subsection, we describe the eigen-system for the MHD equations, including its left- and
right-eigenvectors, which are required for wave projections.

2.1. The Basic Idea of the WENO Approximation

Let h(x) : [0, 1]→ R be a piecewise smooth function. We discretize the interval [0, 1]
into uniform spaced subintervals with grid pointsxi = i1x, 0≤ i ≤ N and1x= 1/N.
Define thesliding averageof h(x) over an interval1x as

h̄1(x) = 1

1x

∫ x+1x
2

x−1x
2

h(s) ds. (2.1)
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FIG. 1. The three sub-stencils.

Suppose that̄hk= h̄1(xk) is known fork= i − 2, i − 1, i, i + 1, andi + 2, the WENO ap-
proximation ofh(xi+1/2) (xi+1/2= xi +1x/2) possesses the following two properties:

(1) If h(x) is smooth nearxi+1/2, the approximated valuehi+1/2 of h(xi+1/2) satisfies

hi+ 1
2
= h

(
xi+ 1

2

)
+ O(1x5).

(2) If h(x) is discontinuous nearxi+1/2, no Gibbs phenomena (i.e., spurious oscilla-
tions) occur.

The idea of the WENO scheme is to weight properly the three sub-stencils of the five-point
stencil xk, i − 2≤ k≤ i + 2 (see Fig. 1). In each sub-stencils (s= 0, 1, 2) the 3rd-order
accurate approximationhs

i+1/2 to h(xi+1/2) is obtained by the Taylor series expansion of
h(x) as

h0
i+ 1

2
= 1

3
h̄i−2− 7

6
h̄i−1+ 11

6
h̄i ,

h1
i+ 1

2
= −1

6
h̄i−1+ 5

6
h̄i + 1

3
h̄i+1,

h2
i+ 1

2
= 1

3
h̄i + 5

6
h̄i+1− 1

6
h̄i+2.

The WENO approximation ofh(xi+1/2) assumes the form

hi+ 1
2
= ω0h0

i+ 1
2
+ ω1h1

i+ 1
2
+ ω2h2

i+ 1
2
, (2.2)

whereω0, ω1, ω2 are the positive weights1 withω0+ω1+ω2= 1. Replacingω1 by 1−ω0−
ω2 and also using the three 3rd-order formulae in (2.2), we get

hi+ 1
2
= 1

12
(−h̄i−1+ 7h̄i + 7h̄i+1− h̄i+2)+ 1

3
ω0(h̄i−2− 3h̄i−1+ 3h̄i − h̄i+1)

+ 1

6

(
ω2− 1

2

)
(h̄i−1− 3h̄i + 3h̄i+1− h̄i+2).

1 Notice that the 5th approximation toh(xi+1/2) based on the five-point stencilxk, i − 2≤ k≤ i + 2, is given by
1
30

h̄i−2− 13
60

h̄i−1+ 47
60

h̄i + 9
20

h̄i+1− 1
20

h̄i+2 or equivalently 1
12
(−h̄i−1+ 7h̄i + 7h̄i+1− h̄i+2)− 1

30
(−h̄i−2+ 4h̄i−1−

6h̄i + 4h̄i+1− h̄i+2). If we choosew0= 0.1, w1= 0.6, w2= 0.3, (2.2) becomes identical to this. These constants
are called optimal weights and are reflected in the numerators in the definitions ofα0, α1, andα2.
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This can be rewritten in the form

hi+ 1
2
= 1

12
(−h̄i−1+ 7h̄i + 7h̄i+1− h̄i+2)− ϕN

(
1h̄i− 3

2
,1h̄i− 1

2
,1h̄i+ 1

2
,1h̄i+ 3

2

)
, (2.3)

where1h̄k+ 1
2
= h̄k+1− h̄k for any integerk and

ϕN(a, b, c, d) = 1

3
ω0(a− 2b+ c)+ 1

6

(
ω2− 1

2

)
(b− 2c+ d).

Now, to complete the description of the WENO approximation, we need to prescribe the
weightsω0 andω2. They are chosen so that both properties (1) and (2) are attained. A
detailed discussion of the selection is given in Jiang and Shu [14]. Using their choice, we
defineω0 andω2 by

ω0 = α0

α0+ α1+ α2
, ω2 = α2

α0+ α1+ α2

α0 = 1

(ε + IS0)2
, α1 = 6

(ε + IS1)2
, α2 = 3

(ε + IS2)2

IS0 = 13(a− b)2+ 3(a− 3b)2, IS1 = 13(b− c)2+ 3(b+ c)2,

IS2 = 13(c− d)2+ 3(3c− d)2.

Hereε= 10−6 is used to prevent the denominators from becoming zero. According to Jiang
and Shu [14], the result is not sensitive toε as long as it is in the range of 10−5 to 10−7.
Notice thatϕN is a nonlinear function becauseω0, ω2 are nonlinear functions ofa, b, c,
andd.

Similarly, from values of̄hk= h̄(xk) for k= i − 1, i, i + 1, i + 2, andi + 3, the WENO
approximation ofh(xi+1/2) is given by

hi+ 1
2
= 1

12
(−h̄i−1+ 7h̄i + 7h̄i+1− h̄i+2)+ ϕN

(
1h̄i+ 5

2
,1h̄i+ 3

2
,1h̄i+ 1

2
,1h̄i− 1

2

)
. (2.4)

2.2. The WENO Scheme for Conservation Laws

In this subsection, we describe a finite difference version of the ENO/WENO scheme.
We start with the formulation for 1D, first for a scalar equation, and then for a system. Then
we present the procedure for a system of conservation laws in 2D, whose extension to 3D
is obvious.

For a 1D scalar equation

ut = − f (u)x, (2.5)

the scheme uses a conservative approximation to the spatial derivatives,

dui (t)

dt
= − 1

1x

(
f̂ i+ 1

2
− f̂ i− 1

2

)
(2.6)

whereui (t) is the numerical approximation to the point valueu(xi , t) in a uniform grid and
the numerical flux

f̂ i+ 1
2
= f̂ (ui−r , . . . ,ui+s)
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is required to be a Lipschitz continuous function in all the arguments and also to be consistent
with the physical flux, i.e.,f̂ (u, . . . ,u) = f (u).

For achieving numerical stability and for avoiding entropy violating solutions, upwinding
and flux splitting approaches are used in constructing the flux. The flux is written as a sum
of the positive and negative fluxes,f ±(u),

f (u) = f +(u)+ f −(u), (2.7)

where

d f+(u)
du

≥ 0 (2.8)

d f−(u)
du

≤ 0. (2.9)

Thus for the equationut + f +x = 0, the wave propagates in the increasingx direction, while
for ut + f −x = 0, it goes the other way. There are several choices for defining the flux. A
simple choice is given by the Lax–Friedrichs splitting, which produces very smooth fluxes,

f ±(u) = 1

2
( f (u)± αu), (2.10)

whereα is taken as maxu| f ′(u)| over the relevant range ofu. If the range is locally defined,
it is called the local Lax–Friedrichs splitting; if the range is global, it is called the global
Lax–Friedrichs splitting. For lower order schemes the quality of the solution is usually very
sensitive to the choice of the spltting, and the Lax–Friedrichs flux is very diffusive. But this
sensitivity is much less important for a higher-order method.

We then apply the WENO approximation procedure, as was given in Subsection 2.1 to
f ±(u) to obtain two numerical fluxeŝf ±i+1/2, and sum them up to obtain the numerical flux
f̂ i+1/2. The 5th-order WENO approximations, (2.3) and (2.4), give

f̂ +
i+ 1

2
= 1

12
(− f +i−1+ 7 f +i + 7 f +i+1− f +i+2)− ϕN

(
1 f +

i− 3
2
,1 f +

i− 1
2
,1 f +

i+ 1
2
,1 f +

i+ 3
2

)
(2.11)

f̂ −
i+ 1

2
= 1

12
(− f −i−1+ 7 f −i + 7 f −i+1− f −i+2)+ ϕN

(
1 f −

i+ 5
2
,1 f −

i+ 3
2
,1 f −

i+ 1
2
,1 f −

i− 1
2

)
, (2.12)

where1 f +k+1/2= f +k+1− f +k and similarly for the negative flux components. Note that the
idea of upwinding is applied here:̂f +i+1/2 is obtained from the five-point stencil fork from
i − 2 to i + 2, and f̂ −i+1/2 is obtained from the five-point stencil fork from i − 1 to i + 3.
Adding togetherf̂ +i+1/2 and f̂ −i+1/2 gives the numerical fluxf̂ i+1/2, which depends on six
grid values ati − 2, . . . , i + 3:

f̂ i+ 1
2
= 1

12
(− fi−1+ 7 fi + 7 fi+1− fi+2)− ϕN

(
1 f +

i− 3
2
,1 f +

i− 1
2
,1 f +

i+ 1
2
,1 f +

i+ 3
2

)
+ϕN

(
1 f −

i+ 5
2
,1 f −

i+ 3
2
,1 f −

i+ 1
2
,1 f −

i− 1
2

)
. (2.13)

This completes the spatial discretization procedure for a scalar equation according to the
5th-order WENO scheme. The time evolution is provided by high-order accurate Runge–
Kutta schemes, which are presented at the end of the section.
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There are several ways to generalize the ENO/WENO schemes to systems of conservation
laws. Our choice is to use characteristic decomposition, which is more robust, but more
computationally intensive, than other simpler implementations. The finite difference version
of the ENO/WENO scheme again solves the system of conservation laws

Ut = −F(U )x, (2.14)

in the conservative form

dUi (t)

dt
= − 1

1x

(
F̂i+ 1

2
− F̂i− 1

2

)
, (2.15)

whereU andF are vectors of them component:U = (u1, u2, . . . ,um)
>, F(U )= ( f1(U ),

f2(U ), . . . , fm(U ))>. Here we again assume the grid is uniform.
The characteristic decomposition procedure proceeds in the following way: Based on

the values ofUi andUi+1, a mean JacobianAi+1/2 is defined at the interfacexi+1/2. For
the MHD code, we takeAi+1/2 to be the Jacobian∂F/∂U of the system evaluated for
some average stateUi+1/2, which is a function ofUi andUi+1. Their exact definitions are
given in Subsection 2.3. The eigenvalues of the matrixA correspond to the wave speeds
of the system. As noted in the Introduction, although the eigenvalues in the MHD system
can be degenerate, a complete set of eigenvectors can be found. Let us denote the right
eigenvectors ofA by Rs and, correspondingly, the left eigenvectors byLs for s= 1, . . . ,m.
The right eigenvector is a column vector and the left eigenvector is a row vector, both with
m components. By proper normalization,Lr · Rs= δrs.

GivenRi+1/2 andLi+1/2, the physical fluxes atk= i − 2, . . . , i + 3 are projected into the
right eigenvector space,

Fk =
m∑

s=1

Fs
k Rs

i+ 1
2

(2.16)

with Fs
k = Li+1/2 · Fk. The physical meaning of this step is that the system is decomposed

into a set of locally independent linear equations. Now we use the technique in the scalar
case to find the numerical flux̂Fs

i+1/2 at i + 1
2 for each component. The Lax–Friedrichs flux

splitting is used to separate the flux into positive and negative parts:Fs±
k = (Fs

k ±αsUs
k )/2.

Here,Us
k = Li+1/2 · Uk, representing the characteristic variable andαs is the maximum

value of thesth eigenvalue ofAk+ 1
2
, either over the entire range ofk for the global flux

splitting or over(i − 2, . . . , i + 3) for the local flux splitting. Thus, from (2.13), the WENO
approximation gives

F̂s
i+ 1

2
= 1

12

(−Fs
i−1+ 7Fs

i + 7Fs
i+1− Fs

i+2

)− ϕN

(
1Fs+

i− 3
2
,1Fs+

i− 1
2
,1 f s+

i+ 1
2
,1Fs+

i+ 3
2

)
+ϕN

(
1Fs−

i+ 5
2
,1Fs−

i+ 3
2
,1Fs−

i+ 1
2
,1Fs−

i− 1
2

)
.

From (2.16), we finally obtain the numerical flux as

F̂i+ 1
2
= 1

12
(−Fi−1+ 7Fi + 7Fi+1− Fi+2)

+
m∑

s=1

(
−ϕN

(
1Fs+

i− 3
2
,1Fs+

i− 1
2
,1Fs+

i+ 1
2
,1Fs+

i+ 3
2 , j

)
+ϕN

(
1Fs−

i+ 5
2
,1Fs−

i+ 3
2
,1Fs−

i+ 1
2
,1Fs−

i− 1
2

))
Rs

i+ 1
2
. (2.17)
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Since for 2D and 3D, the conservative approximation to the derivative can be obtained
in a dimension-by-dimension fashion, the scheme can be applied to 2D and 3D in a sim-
ple manner. The following is the complete WENO scheme in 2-D. Let the uniform two-
dimensional lattice grid points be(xi , yj )= (i1x, j1y) with 0≤ i ≤ Nx, 0≤ i ≤ Ny and
1x= 1/Nx,1y= 1/Ny. For a system of conservation laws

Ut = −F(U )x − G(U )y, 0< x, y < 1, (2.18)

whereU = (u1, u2, . . . ,um)
>, F(U )= ( f1(U ), f2(U ), . . . , fm(U ))> andG(U )= (g1(U ),

g2(U ), . . . , gm(U ))>, the semi-discrete 5th-order accurate WENO scheme is

dUi, j (t)

dt
= − 1

1x

(
F̂i+ 1

2 , j
− F̂i− 1

2 , j

)
− 1

1y

(
Ĝi, j+ 1

2
− Ĝi, j− 1

2

)
(2.19)

with F̂ andĜ defined dimension-by-dimension as

F̂k+ 1
2 , j
= 1

12
(−Fk−1, j + 7Fk, j + 7Fk+1, j − Fk+2, j )

+
m∑

s=1

(
−ϕN

(
L F

s ·1Fs,+
k− 3

2 , j
, L F

s ·1Fs,+
k− 1

2 , j
, L F

s ·1Fs,+
k+ 1

2 , j
, L F

s ·1Fs,+
k+ 3

2 , j

)
+ϕN

(
L F

s ·1Fs,−
k+ 5

2 , j
, L F

s ·1Fs,−
k+ 3

2 , j
, L F

s ·1Fs,−
k+ 1

2 , j
, L F

s ·1Fs,−
k− 1

2 , j

))
RF

s . (2.20)

HereFs,±
l , j = 1

2(Fl , j ±αsUl , j ), whereFl , j = F(Ul , j ), is the positive/negative part of the flux
F at (xl , yj ). For the global Lax–Friedrichs flux splitting,αs= max0≤p≤Nx |λs

p, j | where
λs

p, j is thesth eigenvalue of the Jacobian∂F/∂U evaluated atUp, j . For the local Lax–
Friedrichs splitting, takeαs= maxk−2≤p≤k+3 |λs

p. j |. L F
s and RF

s are respectively, thesth
left and right eigenvector of some mean JacobianAk+1/2, j depending onUk, j andUk+1, j .

Similarly, Ĝ is given by

Ĝi,k+ 1
2
= 1

12
(−Gi,k−1+ 7Gi,k + 7Gi,k+1− Gi,k+2)

+
m∑

s=1

(
−ϕN

(
LG

s ·1Gs,+
i,k− 3

2
, LG

s ·1Gs,+
i,k− 1

2
, LG

s ·1Gs,+
i,k+ 1

2
, LG

s ·1Gs,+
i,k+ 3

2

)
+ϕN

(
LG

s ·1Gs,−
i,k+ 5

2
, LG

s ·1Gs,−
i,k+ 3

2
, LG

s ·1Gs,−
i,k+ 1

2
, LG

s ·1Gs,−
i,k− 1

2

))
RG

s . (2.21)

The quantities are similarly defined, except that here they refer to the fluxG in the y
direction.

In above, we have provided a WENO semi-discrete approximation, which is 5th-order
accurate in terms of local truncation error. Now we provide discretization for the resulting
set of ordinary differential equations for time evolution. We can obtain a 5th-order fully
discretized scheme if a 5th-order time discretization is used. However, because most of
the computational errors come from the spatial discretization, we have employed a 3rd- or
4th-order accurate time evolution scheme. The Runge–Kutta schemes of Shu [25] for the
time discretization are used in this paper. Denote the right-hand side of (2.19) asL(U ),
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omitting the spatial indices; the third-order TVD Runge–Kutta scheme is simply

U (1) = U (0) +1t L
(
U (0)

)
,

U (2) = U (1) + 1t

4

(−3L
(
U (0)

)+ L
(
U (1)

))
,

U (3) = U (2) + 1t

12

(−L
(
U (0)

)− L
(
U (1)

)+ 8L
(
U (2)

))
.

A useful 4th-order, but not TVD, Runge–Kutta scheme is

U (1) = U (0) + 1t

2
L
(
U (0)

)
,

U (2) = U (1) + 1t

2

(−L
(
U (0)

)+ L
(
U (1)

))
,

U (3) = U (2) + 1t

2

(−L
(
U (1)

)+ 2L
(
U (2)

))
,

U (4) = U (3) + 1t

6

(
L
(
U (0)

)+ 2L
(
U (1)

)− 4L
(
U (2)

)+ L
(
U (3)

))
.

In all our numerical tests in Section 3, we have used the 4th-order Runge–Kutta scheme for
time evolution.

2.3. The Eigenvectors for the MHD Equations

We first present the eigen-system for the one-dimensional MHD system,

Ut = −F(U )x (2.22)

with

U = (ρ, ρvx, ρvy, ρvz, By, Bz, ε)
>, (2.23)

F(U ) = (ρvx, ρv
2
x + p∗, ρvxvy − Bx By, ρvxvz− Bx Bz, vx By − vy Bx,

vx Bz− vzBx, vx(ε + p∗)− Bx(vx Bx + vy By + vzBz)
)>
. (2.24)

Here p∗ = p+ 1
2 B2 andε= 1

2ρv
2+ 1

2 B2+ p/(γ − 1). Note that the subscripts forB, v,
and other similar variables refer to the components of the variables and do not indicate the
spatial derivatives as in (2.22).

Let (bx, by, bz)= (Bx, By, Bz)/
√
ρ, b2= b2

x + b2
y+ b2

z and b2
⊥ = b2

y+ b2
z. The sound

speed and the Alfv´en speed are, respectively,

a =
√
γ p

ρ
, ca = |bx|.

The fast and slow speeds are given by

C f,s =
{

1

2

[
a2+ b2±

√
(a2+ b2)2− 4a2b2

x

]} 1
2

.
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The eigen-system of (2.22) has extensively been studied; see, for example, Jeffrey and
Taniuti [13]. However, the set of eigenvectors given there can be singular at the points where
the eigenvalues are degenerate. Brio and Wu [4] have given a proper choice of normalization
that avoids these singularities and provides a complete set of eigenvectors. Their procedure
is employed in this work. To this end, we define

(βy, βz) =


(By,Bz)√

B2
y + B2

z

if B2
y + B2

z 6= 0,(
1√
2
, 1√

2

)
otherwise,

(2.25)

(α f , αs) =


(√

a2− c2
s,
√

c2
f −a2

)√
c2

f − c2
s

if B2
y + B2

z 6= 0 orγ p 6= B2
x ,(

1√
2
, 1√

2

)
otherwise,

(2.26)

sgn(Bx) =
{

1 if Bx ≥ 0,

−1 otherwise.
(2.27)

The eigenvalues are

λ1,7 = vx ∓ cf , λ2,6 = vx ∓ ca, λ3,5 = vx ∓ cs, λ4 = vx.

With the abbreviations,

γ1 = γ − 1

2
,

γ2 = γ − 2

γ − 1
,

τ = γ − 1

a2
,

0 f = α f c f vx − αscs sgn(Bx)(βyvy + βzvz),

0a = sgn(Bx)(βzvy − βyvz),

0s = αscsvx + α f c f sgn(Bx)(βyvy + βzvz),

the corresponding left and right eigenvectors are given by

L1,7 = 1

2a2

(
γ1α f v

2± 0 f , (1− γ )α f vx ∓ α f c f , (1− γ )α f vy ± csαsβy sgn(Bx),

(1− γ )α f vz± csαsβz sgn(Bx), (1− γ )α f By −√ρaαsβy,

(1− γ )α f Bz−√ρaαsβz, (γ − 1)α f
)
,

R>1,7 =
(
α f , α f (vx ∓ cf ), α f vy ± csαsβy sgn(Bx), α f vz± csαsβz sgn(Bx),

aαsβy√
ρ
,

aαsβz√
ρ
, α f

[
1

2
v2+ c2

f − γ2a2

]
∓ 0 f

)
,

L2,6 = 1

2

(
0a, 0,−βz sgn(Bx), βy sgn(Bx),∓√ρβz,±√ρβy, 0

)
,
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R>2,6 =
(

0, 0,−βz sgn(Bx), βy sgn(Bx),∓ βz√
ρ
,± βy√

ρ
,−0a

)
,

L3,5 = 1

2a2

(
γ1αsv

2± 0s, (1− γ )αsvx ∓ αscs, (1− γ )αsvy ∓ cf α f βy sgn(Bx),

(1− γ )αsvz∓ cf α f βz sgn(Bx), (1− γ )αsBy −√ρaα f βy,

(1− γ )αsBz−√ρaα f βz, (γ − 1)αs
)
,

R>3,5 =
(
αs, αs(vx ∓ cs), αsvy ∓ cf α f βy sgn(Bx), αsvz∓ cf α f βz sgn(Bx),

−aα f βy√
ρ
,−aα f βz√

ρ
, αs

[
1

2
v2+ c2

s − γ2a2

]
∓ 0s

)
,

L4 =
(

1− 1

2
τv2, τvx, τvy, τvz, τBy, τBz,−τ

)
,

R>4 =
(

1, vx, vy, vz, 0, 0,
1

2
v2

)
,

whereR> denotes the transpose of a column vectorR.
In the actual implementation, the conditionB2

x + B2
y 6= 0 in (2.25) and (2.26) is relaxed

to B2
x + B2

y >δB2 with δ being a small dimensionless constant, about 10−12. Likewise, the
conditionγ p 6= B2

x is relaxed to|γ p− B2
x |>δγ p.

To evaluateLs and Rs (s= 1, 2, . . . ,7) at the half grid pointk+ 1
2, a state vector is

required there. We define this state as the arithmetic averaging of the values at the two
neighboring grid pointsk andk + 1 for the density, the velocity, the magnetic field, and
the hydrodynamic pressure. Although it is possible to define the state atk+ 1

2 through Roe
averaging, tests show little differences whether a simple averaging or a Roe average is used
for time-dependent problems. Forγ = 2, a single Roe-average state can be obtained. In
the general situation, however, more than one average of the magnetic-field components is
necessary to achieve Roe-averaging [20].

For the 2D MHD system, which is (2.18) with

U = (ρ, ρvx, ρvy, ρvz, Bx, By, Bz, ε)
>, (2.28)

F(U ) = (ρvx, ρv
2
x + p∗ − B2

x , ρvxvy − Bx By, ρvxvz− Bx Bz, 0, vx By − vy Bx,

vx Bz− vzBx, vx(ε + p∗)− Bx(vx Bx + vy By + vzBz)
)>
, (2.29)

G(U ) = (ρvy, ρvyvx − By Bx, ρv
2
y + p∗ − B2

y, ρvyvz− By Bz, (2.30)

vy Bx − vx By, 0, vy Bz− vzBy,

vy(ε + p∗)− By(vx Bx + vy By + vzBz)
)>
, (2.31)

its eigen-system can be found by slightly modifying the eigen-system for the one-dimen-
sional MHD equations. First we notice the similarity between the fluxesF and G. In
fact, G(U )= SF(SU) whereS is a “swap” matrix which swaps the 2nd component of a
vector with its 3rd component and at the same time, swaps the 5th component with the 6th
component, i.e.,S23= S32= S56= S65= 1 and the rest of entries are zero. This property can
be used to find the eigen-system ofG from the eigen-system ofF .
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We have experimented with two sets of eigenvectors for the eigen-system ofF : One is a
direct extension of the one-dimensional system and the other is based on the modification
proposed by Powellet al. [20]. In the direct extension, we first notice that the 5th component
of F is zero, which corresponds to the evolution equation for thex-component of the
magnetic fieldBx. If we ignore this component, the rest is identical to the one-dimensional
flux, in which caseBx is a constant. In this case,L F

s andRF
s (s= 1, 2, . . . ,7) can be obtained

in the same way as in the one-dimensional case. We call such an eigen-system the 7× 7
eigen-system.

In the 8× 8 eigen-system of Powellet al. [20], the eigenvalues are

λ1,8 = vx ∓ cf , λ2,7 = vx ∓ ca, λ3,6 = vx ∓ cs, λ4,5 = vx.

Their corresponding eigenvectors can be obtained from the 7× 7 eigen-system in a simple
manner. The left eigenvectorsL1,8, L2,7, L3,6, andL4 are obtained, respectively, by inserting
into L1,7, L2,6, L3,5, andL4 of the 7× 7 eigen-system a 5th component whose value is−Bx

multiplied by the last component of each left eigenvector. Similarly, the right eigenvectors
R1,8, R2,7, R3,6, and R4 are obtained, respectively, by adding a 5th component with null
value toR1,7, R2,6, R3,5, andR4 of the 7× 7 eigen-system. In addition,L5 andR5 are given
by

L5 = (0, 0, 0, 0, 1, 0, 0, 0),
R>5 = (0, 0, 0, 0, 1, 0, 0, Bx).

As in the 7× 7 eigen-system, the values ofLs and Rs (s= 1, 2, . . . ,8) at (k+ 1
2, j ) are

obtained at the half-grid-point state, whose values are the arithmetic averaging of density,
velocity, the magnetic field, and pressure at grid points(k, j ) and(k+1, j ). Except for the
5th component, the 7× 7 and 8× 8 eigen-systems give same numerical fluxesF̂k+ 1

2 , j
. The

5th component can be nonzero in the 8× 8 system and is zero in the 7× 7 system.

3. NUMERICAL RESULTS

We present in this section the test results of the WENO MHD scheme for several one-
dimensional and two-dimensional test problems. In all tests, we have used the 4th-order
Runge–Kutta scheme for time discretization and the global Lax–Friedrichs flux splitting.
The time step size for one-dimensional problems is given dynamically by

1t = 0.81x

max(|vx| + cf )
, (3.1)

where the maximum is taken over all computational grid points. For two-dimensional prob-
lems, it is determined every time step by

1t = 0.8

/[
max

(|vx| + cx
f

)
1x

+ max
(|vy| + cy

f

)
1y

]
, (3.2)

where the maxima are also taken over all computational grid points. Herecx
f andcy

f are the
fast speeds in thex- andy-direction, respectively. The CFL number is 0.8.
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3.1. One-Dimensional Riemann Problems

We solve the one-dimensional MHD equations (2.22)–(2.24) with the following two
Riemann data, both drawn from [4]. The first Riemann problem is given by

(ρ, vx, vy, vz, By, Bz, p) =
{
(1.000, 0, 0, 0, +1, 0, 1.0) for x < 0,

(0.125, 0, 0, 0, −1, 0, 0.1) for x > 0,

with Bx = 0.75, γ = 2. Note that the hydrodynamic data are the same as the Sod’s Riemann
problem [28]. This is the example used by Brio and Wu [3, 4] to show the formation of a
compound wave in MHD.

We take the computational domain to be [−1, 1] with 800 points. The solution att = 0.2 is
shown in Fig. 2, which includes, moving to the left, a fast rarefaction wave, an intermediate

FIG. 2. The first Riemann problem of Brio and Wu with 800 grid points att = 0.2. The symbolFR denotes
a fast rarefaction wave;SM is a compound wave (an intermediate shock followed by a slow rarefaction wave);
C is a contact discontinuity;SSis a slow shock.
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shock, which is attached by a slow rarefaction wave, and, moving to the right, a contact
discontinuity, a slow shock, and a fast rarefaction wave. The left-moving intermediate
shock, which changesBy from 0.58 to−0.31, is of the type that its shock-frame flow speed
is sub-fast, super-Alfv´enic, and super-slow upstream and sub-Alfv´enic, and equal to slow
speed downstream. Thus the intermediate shock is attached by the slow rarefaction wave,
which changesBy from −0.31 to−0.53, and both form a compound wave. Across this
compound wave, there is only one parameter to specify. Therefore we get a five parameter
family of states which can be connected to the left state. Since there are five values (ρ,
vx, vy, By, and p) to determine for the right state, the Riemann solution of this problem
is unique. In this example we are confined to a planar situation, whereBz= vz= 0, so the
intermediate shock structure is uniquely defined and multiple Riemann solutions mentioned
in the Introduction do not occur. IfBz and/orvz are nonzero, then more than one Riemann
solution can occur [33].

The computed result agrees with the one obtained by Brio and Wu [4], who used a second
order TVD scheme. Since around shock waves and discontinuities, our code becomes first-
order accurate, just like their code, we do not expect any improvement in capturing these
structures. Indeed, our result shows that there are 4 to 5 grid points within each shock
layer, which is comparable with theirs. For the rarefaction waves, our results also agree
with theirs. Since the solution is so simple, our high-order code does not make any obvious
change either. However, our result shows noticeable oscillations near the trailing edge of the
right-moving fast rarefaction wave, which may be caused by the high-order approximation.
Such oscillations disappear when we compute the same problem in a moving frame.

This 1D Riemann problem is also solved in a 2D computational grid, serving as a test for
the 2D version of the code. A grid of 600× 600 points covering [−1, 1]× [−1, 1] in the
(x, y) plane is used. In a 45◦-rotated coordinate(x′, y′), the Riemann data are prescribed
initially for x′> 0 andx′< 0 regions. Figure 3 shows the results of two calculations plotted
along thex′ direction. Both computations use the 8× 8 eigen-system. The left-hand column
of the figure shows the results that include the additional step of enforcing the∇ · B= 0
condition as specified in the Introduction. A relaxation method is employed in solving the
Poisson equation. The right-hand column contains results without this correction procedure.
Clearly the correction step plays an important role in these 2D calculations. The one with
the correction step agrees with the 1D results in Fig. 2. Without the correction, the results
show spurious oscillations near the slow rarefaction wave within the compound wave.

The second Riemann problem is

(ρ, vx, vy, vz, By, Bz, p) =
{
(1.000, 0, 0, 0, +1, 0, 1000) for x < 0,

(0.125, 0, 0, 0, −1, 0, 0.10) for x > 0,

with Bx = 0, γ = 2. This problem is used to evaluate the code for high Mach number flow.
The Mach number corresponding to the right-moving shock wave is 15.5. If one replaces the
hydrodynamic pressure by the sum of the plasma and the magnetic pressures, this problem
becomes a standard hydrodynamical Riemann problem and thus the exact solution can be
easily found. In addition, the equation forBy is the same as the equation for the density.
Thus,By andρ behave similarly to the left and to the right of the tangential discontinuity,
where the jumps inBy andρ are not related. We take the computational domain to be
[−1, 1] with 200 points. The solution att = 0.012 is shown in Fig. 4, with the exact solution
shown by a solid continuous line. The quality of the solution is again very similar to that of
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FIG. 3. The first Riemann problem of Brio and Wu computed in a 2D grid with 600× 600 points att = 0.2.
The left-hand column shows the results with the correction step of enforcing the condition of∇ ·B= 0, while the
right-hand column contains results without this step.

the TVD scheme. There are about 5 points within the strong shock and about seven points
within the tangential discontinuity. Note that in our code, no artificial compression is used
to sharpen the tangential discontinuity.

3.2. Formation of Intermediate Shocks

In this example, we repeat the calculation of Wu [32], that showed that intermediate shocks
can be formed through nonlinear wave steepening from continuous waves, indicating that
intermediate shocks are physical. As in [32], a slow simple wave solution is used as an initial
condition. InitiallyBy(x)= 0.5 sin(2πx)over 0≤ x≤ 1 with a periodic boundary condition.
The other quantities (ρ, vx, vy, vz, Bz, andp) are numerically obtained by solving the simple
wave relation:dU= R5, with U given in (2.23) andR5, given in Subsection 2.3, the right-
eigenvector for the slow wave characteristic speedvx + cS. All quantities are normalized
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FIG. 4. The second Riemann problem of Brio and Wu with 200 grid points att = 0.012.

with the following values atBy= 0: Bx = 1,ρ= 1, p= 1,vx = vy= vz= 0, andBz= 0. The
ratio of specific heatsγ = 5/3 is used. In this one-dimensional problem,Bx is a constant
and bothvz andBz vanish; it is a planar problem.

Figure 5 shows theρ andBy solutions att = 0, 0.5, 0.6, and 1, which are obtained with
the new WENO code using 2560 grid points. These results agree with the results in [32],
where plots for other variables and results at later times can be found. Initially, the wave is
compressive in the range 0.25≥ x≥ 0 and 0.75≥ x≥ 0.5, where|By| decreases from 0.5
to 0 asρ increases from 0.81 to 1. The wave is expansive in the other intervals. AtBy= 0,
the slow wave and the intermediate wave are degenerate and also the system is non-convex
there. Thus this calculation seems to be a good example to test the accuracy of the codes.
As the solution evolves, the characteristics in the compressive regions begin to converge
while those in the expansive regions spread. As shown in [32], a pair of slow shocks is first
formed att ∼ 0.54 atx∼ 0.13 and 0.63, whose characteristics can be traced back to the
initial location atx= 0.63 and 0.13, respectively, where the steepening rate is maximum.
Thus prior tot ∼ 0.54, the solution is smooth and the codes should attain their expected
accuracy. The evolution continues after the shock formation. The slow characteristics and,
eventually, the intermediate wave characteristics converge into the shocks. Att = 1, the
shocks evolve into intermediate shocks:By changes its sign and jumps from−0.47 to 0.029
across the shock atx∼ 0.49 and from 0.47 to−0.029 across the one atx∼ 0.99. After
the shock formation, fast waves, the entropy wave, and the other slow wave (moving with
vx − cs) begin to form. These waves are not necessarily smooth. They travel through this
periodic system and ultimately determine the order of accuracy of the calculation.
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FIG. 5. Formation of intermediate shocks: Plots ofρ and By at t = 0, 0.5, 0.6, and 1. Slow shocks are first
formed att ∼ 0.54 and they evolve into intermediate shocks att ∼ 1.

In Table I, we show the errors of two schemes att = 0.25. In addition to the new WENO
MHD scheme, we include a second scheme which uses a 3rd-order ENO scheme [27] (3rd-
order accurate in space and time). Both ENO and WENO share the same construction. Their
differences are in the choice of the flux and the order of the Runge–Kutta time integration.
For the WENO scheme, we have adjusted the time step to1t ∼ (1x)5/4 so that the 4th-order
Runge–Kutta procedure in time is effectively 5th-order [14]. The errors are the deviations
of By away from its values computed with the WENO code using 2560 grid points. The
WENO scheme gives an order of accuracy of about 4.5 with 80–320 grid points while the
ENO scheme achieves an order of about 2.5.
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TABLE I

Accuracy on the Example in Subsection 3.2 att = 0.25 with a 5th-Order

WENO Scheme and a 3rd-Order ENO Scheme

Method N L1 error L1 order L∞ error L∞ order

WENO 10 2.8e-2 — 5.3e-2 —
20 5.3e-3 2.4 1.9e-2 1.5
40 5.1e-4 3.4 2.6e-3 2.9
80 2.8e-5 4.2 2.9e-4 3.2

160 1.2e-6 4.5 1.2e-5 4.6
320 4.3e-8 4.8 4.5e-7 4.7

ENO 10 3.0e-2 — 6.3e-2 —
20 8.0e-3 1.9 2.0e-2 1.7
40 1.3e-3 2.6 4.7e-3 2.1
80 2.2e-4 2.6 1.1e-3 2.1

160 3.8e-5 2.5 2.2e-4 2.3
320 7.8e-6 2.3 7.0e-5 1.7

In Table II, the errors are shown att = 0.5, when the wave is highly steepened but still
before the shock formation. Near the steepened regions, the codes are expected to be less
accurate. TheL1 and L∞ errors confirm this trend. We expect bothL1 and L∞ to reach
their expected order of accuracy as the number of grid points is increased. However, the
codes still obtain their expected accuracy in the region away from these steepened intervals
as shown byL∗1 errors, which are theL1 errors limited to the interval within 0.2≤ x≤ 0.4.

The errors att = 0.6, after shocks are formed, are presented in Table III. Because of the
shocks, theL1 order is about 1 for both schemes. As the shocks are formed, other waves
(including entropy, fast, and intermediate waves) are necessarily generated. In the region
that is not yet affected by these waves, high order of accuracy is maintained, as indicated by
the L∗1 errors which covers 0.3≤ x≤ 0.4. By the timet = 1 (Table IV), these other waves

TABLE II

Accuracy on the Example in Subsection 3.2 att = 0.5 with a 5th-Order

WENO Scheme and a 3rd-Order ENO Scheme

Method N L1 error L1 order L∗1 error L∗1 order L∞ error L∞ order

WENO 10 5.8e-2 — 2.6e-2 — 1.2e-1 —
20 1.8e-2 1.9 3.0e-3 3.1 6.4e-2 0.91
40 7.4e-3 1.3 3.2e-4 3.2 4.6e-2 0.48
80 2.6e-3 1.5 1.9e-5 4.1 3.8e-2 0.28

160 7.4e-4 1.8 6.7e-7 4.8 2.3e-2 0.72
320 1.6e-4 2.2 4.5e-9 7.2 7.6e-3 1.6

ENO 10 6.8e-2 — 2.2e-2 — 1.4e-1 —
20 2.2e-2 1.6 3.7e-3 2.6 6.8e-2 1.0
40 1.0e-2 1.1 7.6e-4 2.3 5.1e-2 0.42
80 4.0e-3 1.3 1.6e-4 2.2 3.9e-2 0.39

160 1.3e-3 1.6 2.7e-5 2.6 2.4e-2 0.70
320 3.5e-4 1.9 4.7e-6 2.5 1.1e-2 1.1

Note. L1 andL∞ cover 0≤ x≤ 1 while L∗1 covers only 0.2≤ x≤ 0.4.



580 JIANG AND WU

TABLE III

Accuracy on the Example in Subsection 3.2 att = 0.6 with a 5th-Order

WENO Scheme and a 3rd-Order ENO Scheme

Method N L1 error L1 order L∗1 error L∗1 order L∞ error

WENO 20 3.3e-2 — 4.5e-3 — 1.4e-1
40 1.4e-2 1.2 8.1e-4 2.5 1.0e-1
80 5.1e-3 1.5 1.2e-4 2.8 7.9e-2

160 2.9e-3 0.81 5.4e-6 4.5 1.1e-1
320 1.4e-3 1.1 4.9e-7 3.5 8.6e-2

ENO 20 4.1e-2 — 1.4e-4 — 1.6e-1
40 1.8e-2 1.2 1.2e-3 — 1.1e-1
80 8.2e-3 1.1 4.0e-4 1.6 1.1e-1

160 3.9e-3 1.1 1.0e-4 2.0 1.1e-1
320 1.8e-3 1.1 2.1e-5 2.3 8.6e-2

Note. L1 andL∞ cover 0≤ x≤ 1 while L∗1 covers only 0.3≤ x≤ 0.4.

have traveled throughout the system. TheL1 order is again about 1. In the regions away
from the intermediate shocks, the solution is not exactly smooth because these other waves,
though small in amplitude, are not necessarily smooth. This seems to explain the fact that
the L∗1 order over the 0.2≤ x≤ 0.3 region drops to about 1 as theL∗1 errors become small.
Although both WENO and ENO have similar orders of accuracy att = 1, Fig. 6 shows that
WENO provides a better shock capturing capability than both ENO and a 2nd-order scheme
by Liu and Lax [16]. The Liu–Lax scheme (labelled LL; 2nd-order accurate in space and
time) shares the same construction as WENO and ENO but has a different choice of the
flux and the order of the Runge–Kutta time integration.

3.3. Two-Dimensional Kelvin–Helmholtz Instability

The Kelvin–Helmholtz instability can arise when two superposed fluids flow one over
the other with a relative velocity. It occurs in many physical phenomena. As an example, the
Kelvin–Helmholtz instability is considered as an important mechanism for the momentum

TABLE IV

Accuracy on the Example in Subsection 3.2 att = 1 with a 5th-Order

WENO Scheme and a 3rd-Order ENO Scheme

Method N L1 error L1 order L∗1 error L∗1 order L∞ error

WENO 20 4.6e-2 — 7.8e-3 — 2.0e-1
40 2.2e-2 1.1 1.7e-3 2.2 1.7e-1
80 1.1e-2 1.0 4.1e-4 2.1 1.7e-1

160 3.1e-3 1.8 2.2e-4 0.9 8.8e-2
320 1.5e-3 1.0 1.1e-4 1.0 8.8e-2

ENO 20 5.9e-2 — 1.1e-2 — 2.4e-1
40 2.8e-2 1.1 3.5e-3 1.7 2.0e-1
80 1.3e-2 1.1 5.4e-4 2.7 1.7e-1

160 4.3e-3 1.6 2.1e-4 1.4 1.0e-1
320 2.1e-3 1.0 1.2e-4 0.8 1.1e-1

Note. L1 andL∞ cover 0≤ x≤ 1 while L∗1 covers only 0.2≤ x≤ 0.3.
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FIG. 6. TheBy distributions across an intermediate shock atx∼ 0.49 att = 1. The solid curve is obtained by
the WENO scheme with 2560 grid points. Results marked bys,+, ande are obtained with 80 grid points from
the WENO code, the 3rd-order ENO code, and the 2nd-order Liu–Lax scheme, respectively.

transfer at the Earth’s magnetopause boundary, which separates the solar wind flow from
the Earth’s magnetosphere. Here we apply the WENO scheme to the two-dimensional
periodic model and convective model with transverse magnetic field configuration. In a
convective model, the excitation has a finite convective velocity. See [31] and its references
for details.

The governing equations are the two-dimensional MHD system (2.18), (2.28)–(2.31).
The initial stationary configuration of the periodic model is given byρ0= 1, vx0= (v0/2)
tanh(y/a), vy0= vz0= 0, Bx0= By0= 0, Bz0= 1, andp0= 0.5, wherea denotes the width
of the velocity shear layer. Att = 0, a small perturbation of the following form is introduced:

ṽx0 =
{
−ṽ0 sin(2πx/λ)/(1+ y2), if − λ

2 < x < λ
2,

0, otherwise.
(3.3)

The computational domain is [− L
2 ,

L
2 ]× [0, H ]. We have usedv0= 2, ṽ0= 0.008,L = λ =

5π , H = 10,a= 1, andγ = 2. The periodic boundary condition is used in thex-direction.
The free outflow condition is applied at the top boundary aty= H . Here we only compute
half of the flow, the other half, fromy=−H to y= 0, can be obtained by symmetry
conditions that under the transformationx→−x, ρ, p, andBz are symmetric andvx and
vy are antisymmetric [31]. We have used two grids in the calculations: one has 48× 30 grid
points and the other has 96× 60 grid points. The grids are stretched in they-direction with
a Roberts transformation

y← H sinh(τy/2H)

sinh(τ/2)
(3.4)

with τ = 6. This transform renders a denser grid neary= 0, where much of the action is
taking place and a coarser grid neary= H , where little is happening. The time evolution
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FIG. 7. Time evolution of the total transverse kinetic energy integrated over [−L/2, L/2]× [−H, H] for both
periodic and convective Kelvin–Helmholtz instability. The results from the periodic systems with 48× 30 grid
points and with 96× 60 grid points are shown by a dashed curve and a dotted curve, respectively. The convective
system is given in a solid curve. For 20< t < 50, the transverse kinetic energy grows likee2γ t with γ , the linear
growth rate, equal to 0.09.

of the total transverse kinetic energy integrated over [−5π/2, 5π/2]× [−10, 10] for both
grids is shown in Fig. 7. The two calculations show almost identical growth. In Fig. 8, we
show the flow components att = 144. The calculation with the fine grid clearly captures
the weak shock near the left boundary while, as expected, the shock has a greater spread
in the coarse-grid run. The shock forms because of the creation of the vortex flow. To the
flow outside the vortex, the situation is similar to the flow over an airfoil in aerodynamics,
where shock waves can be generated off the airfoil.

For the convective model, we assume the same initial profile as in the periodic model. By
using the velocity profile ofvx0= (v0/2) tanh(y/a), we carry out the calculation in a frame
that moves with the excitation of the instability. However, in contrast to the periodic model,
the convective model does not impose the periodic boundary condition in thex-direction.
Instead, a large computational domain (LÀ λ) is employed to allow the excitation to
convect freely. With a sufficiently large value ofL, no disturbance can reach the boundaries
at x=±L/2 during the course of the calculation. Since the size of vortices formed in the
convective system is larger than that of the periodic model, the computational domain in
the y direction is also increased. As in [31], we useL = 11λ= 55π, H = 20, anda= 1.
The initial excitation is imposed in the region−(λ/2)< x<(λ/2) given by (3.3) with
ṽ0= 0.008. A grid of 528× 48 points, with the same grid transform in they-direction as
that in (3.4), is used to achieve comparable resolution with that of the periodic system. The
time evolution of the transverse kinetic energy is shown in Fig. 7. As in [31], we observe
that the transverse kinetic energy continues to grow long after the saturation for the periodic
system. We also observe the formation of large vortices, whose size can be nearly two times
larger than the initial perturbation wave-length. The shocks formed off these vortices are
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FIG. 8. Kelvin–Helmholtz instability in a periodic system. The left-hand column uses 48× 30 points and the
right-hand column uses 96× 60 points. There are 20 contours for density and pressure and the gray colormap
means that the lighter color area has a greater value. The density range is from 0.79 to 1.2, the pressure range is
from 0.31 to 0.72, and the maximum value for the velocity is 1.26.

much stronger than that found in the periodic system. The flow components att = 120 and
t = 145 are shown, respectively, in Figs. 9 and 10. The gross feature in this calculation is
similar to that in [31].

In these calculations, the components ofBx, By, andvz are always zero and the evolution
of Bz follows closely with that of the density. By defining the pressure to bep∗, these MHD
calculations are identical to the Euler calculations. Therefore, the differences between the
periodic model and the convective model are also valid in the Euler system. For these
calculations, results do not depend on whether the 8× 8 eigen-system or the 7× 7 eigen-
system is used.

Because of its high-order accuracy, the WENO scheme achieves an accuracy comparable
with the results of [31], which uses the usual two-step Lax–Wendroff scheme, with many
fewer grid points, and with no spurious oscillations. Table V shows a comparison among
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FIG. 9. The convective Kelvin–Helmholtz instability att = 120. There are 20 contours drawn for density and
pressure. The gray scale indicates that the lighter color area has a greater value. The density range is from 0.62 to
1.3, the pressure range is from 0.19 to 0.85, and the maximum value of the velocity is 1.53.

several numerical schemes for the periodic model with a uniform grid in both thex- and
y-directions over the computational domain of [0, 5π ]× [−10, 10]. The first set of calcula-
tions is conducted with the 5th-order WENO scheme with various numbers of grid points.
A second set (labelled LW1) uses the usual two-step Lax–Wendroff method. For each run,
we list the maximum transverse kinetic energyET attained and the time when it occurs. For
the WENO code, the calculation with the 50× 100 grid is already very accurate, reaching
about 97% of the saturated kinetic energy. Since the solution is more complicated in the
y-direction than in thex-direction, one requires more grid points in they-direction than in
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FIG. 10. The convective Kelvin–Helmholtz instability att = 145. There are 20 contours drawn for density
and pressure. The gray scale indicates that the lighter color area has a greater value. The density range is from
0.46 to 1.3, the pressure range is from 0.12 to 0.86, and the maximum value of the velocity is 1.89.

the x-direction. The convergence of the solution is demonstrated in Fig. 11, which shows
the time evolution of the transverse kinetic energy from the WENO code with 40× 80,
50× 100, 75× 150, and 100× 200 grids.

However, the LW1 code does poorly in simulating the Kelvin–Helmholtz instability. With
a 50× 100 grid, it only reaches about 3% of the converged value. It requires more than
100× 600 to attain the 93% level. One main reason is that although the initial configuration
is an equilibrium state, it cannot be maintained when dissipation terms, either physical or
numerical, are present. Therefore, the Lax–Wendroff scheme, which has larger numerical
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TABLE V

Calculations of the Periodic Kelvin–Helmholtz Instability on Various Grids with a 5th-Order

WENO Scheme, the Lax–Wendroff Codes forU (LW1) and for Ū (LW2), a 3rd-Order ENO

Scheme, and a 2nd-Order Liu–Lax Scheme (LL)

Code Nx × Ny ET T Nx × Ny ET T

WENO 30× 60 2.283 102.0 40× 80 3.365 82.6
50× 100 3.584 80.7 80× 100 3.598 80.8
50× 150 3.676 78.4 80× 150 3.689 78.4
75× 150 3.689 78.5 100× 200 3.703 77.9

LW1 50× 100 0.12 79.3 100× 200 0.38 80.6
100× 300 2.88 79.1 100× 400 3.23 75.8
150× 400 3.23 79.3 100× 600 3.43 78.2

LW2 50× 100 2.65 77.3 50× 200 2.99 78.1
100× 200 3.35 78.5 200× 200 3.57 77.5

ENO 40× 80 3.014 87.5 50× 100 3.342 81.1
75× 150 3.585 79.0 100× 200 3.648 78.0

LL 50× 100 1.32 78.8 100× 200 2.47 64.0
200× 400 3.04 71.8 100× 600 3.02 75.5

Note.The saturated (maximum) total transverse kinetic energy (ET ) integrated over [−5π/2, 5π/2]× [−10, 10],
and the time it occurs (T) are shown for each run.

dissipation terms than the 5th WENO scheme, tends to smooth out more the initial shear-
flow profile. As a result, the computed growth of the Kelvin–Helmholtz instability is smaller
and the saturated energy level is lower. One can remedy this situation by solvingŪ instead
of U in terms ofŪt = (U −U0)t =−(F − F0)x − (G−G0)y, where the quantities with
subscript 0 refer to the initial conditions. Therefore,Ū is zero if there is no perturbation and
the initial U0 profile is kept. This method was employed in [31]. The third set of the runs

FIG. 11. Time evolution of the total transverse kinetic energy integrated over [−L/2, L/2]× [−H, H] for
periodic Kelvin–Helmholtz instability fromt = 55 to t = 85. The results from 40× 80, 50× 100, 75× 150, and
100× 200 grids are plotted as dotted, dashdot, dashed, and solid curves, respectively.
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(labelled LW2) in Table V was carried out in this way using the two-step Lax–Wendroff
scheme. The result shows that they improve greatly over the second set and with a 200× 200
grid, they achieve about the same energy level as the WENO scheme with a 50× 100
grid.

The next two sets use a 3rd-order ENO scheme [27] and a 2nd-order Liu–Lax scheme [16].
As expected, for being a 3rd-order accurate rather than a 5th-order accurate as WENO, the
ENO scheme requires more grid points than WENO to achieve the same saturation level.
The ENO result on a 75× 150 grid is about the same as the WENO result on a 50× 100
grid. The LL scheme is better than LW1 but is not as accurate as LW2. By fittingET

with the expressionET = ET∞+a(1x)n, with constantET∞ and a, for the results on
40× 80, 50× 100, 75× 150, and 100× 200 grids, we obtainn≈ 4.6 and 2.8 for WENO
and ENO, respectively. For the WENO scheme, the expressionET = 3.707− 25(1x)4.6

givesET = 3.368, 3.585, 3.688, and 3.702, for 40× 80, 50× 100, 75× 150, and 100× 200
grids, respectively. These values ofET agree with those values listed in Table V. Similarly,
the expressionET = 3.707− 9.6(1x)2.8 gives a reasonable fit for the ENO results. We have
also compared the total transverse kinetic energy at a fixed timet = 75. For the WENO
scheme, the values of the transverse kinetic energy are 2.69, 3.12, 3.51, and 3.58 on the
respective 40× 80, 50× 100, 75× 150, and 100× 200 grids. The order of accuracy is about
4.2. These figures are consistent with the order of accuracy of these schemes and agree with
the numerical experiments of Shu and Osher [27] and Jiang and Shu [14].

A higher-order accurate code generally requires more operations than a lower-order
accurate code. By counting the number of operations, we can estimate that the computer
time per grid-point update is increased by a factor of about 4 from the 2nd-order Liu–
Lax scheme to the 5th-order WENO scheme. A factor of 2 comes from the increase of
the number of steps in the Runge–Kutta time integration, and a factor of 2 is from the
computation of the flux. Similarly, the increase from a 3rd-order ENO to the 5th-order
WENO is a factor of about 2. These increases do not depend on the dimensionality. These
factors are observed on serial workstations. However, on a vector computer such as the
CRAY T90, the 5th-order WENO scheme can be faster than a 3rd-order ENO because
fewer IF statements are used in WENO than in ENO [14]. Of course a 2nd-order Lax–
Wendroff scheme, which uses no wave decomposition, is faster than WENO by a factor of
more than 100.

We note that the comparison in Table V depends on the physical problems. But let us
assume that its result can be extended to some 3D problems and one can achieve the same
accuracy with 50 grid points in each direction using the 5th-order WENO code, with 75
grid points using the 3rd-order ENO code, and with 150 points using the 2nd-order Liu–Lax
code. Then ENO and Liu–Lax codes require 50 and 300%, respectively, more time steps
than the WENO code. Therefore, despite the fact that the WENO scheme requires more
operations per grid-point update, the WENO scheme is the most efficient among the three.
The ENO scheme needs 2.5 times more CPU time than the WENO scheme and the Liu–Lax
scheme requires 20 times more than the WENO scheme.

3.4. Orszag–Tang MHD Turbulence Problem

In this section, we consider the evolution of a compressible Orszag–Tang vortex sys-
tem [18]. The problem contains many significant features of MHD turbulence and has been
extensively studied by Dahlurg and Picone [6] and Picone and Dahlburg [19]. Because of its
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complex evolution, which involves the interactions between several shock waves generated
as the vortex system evolves, it has also been used as a test problem for numerical codes by
Zacharyet al. [36] and by de Fainchteinet al. [10]. Our initial setup is identical to that of
Zacharyet al.with the initial data

ρ(x, y, 0) = γ 2, vx(x, y, 0) = −siny, vy(x, y, 0) = sinx,

p(x, y, 0) = γ, Bx(x, y, 0) = −siny, By(x, y, 0) = sin 2x,

whereγ = 5/3. Thus, initially, the root mean square (rms) values of velocity and the mag-
netic field are both 1; the initial average Mach number is 1 and the average plasma beta is
10/3. The computational domain is [0, 2π ]× [0, 2π ] with periodic boundary conditions in
both thex- and y-directions. As in the calculations of Zacharyet al., we used a uniform
192× 192 grid.

The calculations were performed with both the 7× 7 eigen-system and the 8× 8 eigen-
system, each with or without the correction step for enforcing the divergence-free condition
for the magnetic field. The Poisson equation for the potentialφ is again solved using a
relaxation method. Without the correction procedure, the calculations with either the 7× 7
system or the 8× 8 system become numerically unstable when the pressure turns to negative.
It occurs att ∼ 3.9 using the 8× 8 eigen-system and att ∼ 2.5 using the 7× 7 eigen-system.
A plausible explanation for the difference is that the 7× 7 system has no diffusion terms
for the flux corresponding to theBx (By) component in thex (y) direction. By adding some
diffusion to the corresponding equations, such as a 4th-order diffusion to the evolution
equation forBx and a similar term for the evolution equation ofBy, we can bring the code
with the 7× 7 eigen-system up to the level of the 8× 8 system. However, these additional
diffusion terms are not needed when the correction procedure for enhancing the∇ · B= 0
condition is employed.

With the addition of the correction procedure, both 7× 7 and 8× 8 systems are numerical
stable and give almost the same results. We have successfully run both up tot = 8. This
is another demonstration that the divergence-free condition for the magnetic field plays an
important role in the MHD calculations. The results using WENO with the 8× 8 eigen-
system are shown in Figs. 12, 13, and 14 fort = 0.5, 2, and 3, respectively. Tables VI and
VII show the errors of the code att = 0.2 and 0.5, respectively. The errors are defined as
the deviations of the density from its value obtained on a 512× 512 grid. For both cases
high order of accuracy is achieved starting with a 64× 64 grid. For the case att = 0.5, the
errors are larger because of the high gradients in the solution (Fig. 12).

TABLE VI

Accuracy on the Orszag–Tang Vortex Problem att = 0.2 Using

the 5th-Order WENO Scheme withN×N Grid Points

N L1 error L1 order L∞ error L∞ order

16 1.8e-2 — 6.6e-2 —
32 3.5e-3 2.4 1.2e-2 2.5
64 2.8e-4 3.6 1.3e-3 3.2

128 1.4e-5 4.3 2.2e-4 2.6
256 6.8e-7 4.4 5.9e-6 5.2
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TABLE VII

Accuracy on the Orszag–Tang Vortex Problem att = 0.5 Using the 5th-Order

WENO Scheme withN×N Grid Points

N L1 error L1 order L∗1 error L∗1 order L∞ error L∞ order

16 7.9e-2 — 2.6e-2 — 1.2 —
32 1.3e-2 2.6 8.3e-3 1.6 3.4e-1 1.8
64 1.2e-3 3.4 6.1e-4 3.8 2.6e-2 3.7

128 1.4e-4 3.1 3.4e-5 4.2 5.0e-3 2.4
256 2.3e-5 2.6 4.4e-6 3.0 4.9e-4 3.4

Note. L1 and L∞ cover the whole computational domain whileL∗1 covers only the region
within 0.9π ≤ x≤ 1.1π and 0.9π ≤ y≤ 1.1π .

FIG. 12. The Orszag–Tang MHD turbulence problem with a uniform 192× 192 grid att = 0.5. The 8× 8
eigen-system is used. There are 12 contours for both density and pressure. The gray scale means that the brighter
color area has a larger value. The range forρ is from 2.1 to 5.8 and it is from 1.0 to 5.8 for p. The maximum
values of|v| and|B| are 1.6 and 1.6, respectively.
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FIG. 13. The Orszag–Tang MHD turbulence problem with a uniform 192× 192 grid att = 2. The 8× 8
eigen-system is used. There are 12 contours for both density and pressure. The gray scale means that the brighter
color area has a larger value. The range forρ is from 0.64 to 6.2 and it is from 0.14 to 6.9 for p. The maximum
values of|v| and|B| are 1.6 and 2.8, respectively.

The results att = 3 agree with the one given by Zacharyet al. [36]. It is seen that
the evolution of the system is very complex and many shocks of all kinds are formed.
For instance, in Fig. 13, an intermediate shock is formed at the shock front from(x, y)
∼ (3π/2, 0) to(π, 3π/4). Across this shock wave, the transverse component of the magnetic
field changes its sign, which is a property of an intermediate shock. On the other hand, for
fast and slow shocks, the transverse component does not change sign and its magnitude
increases from upstream to downstream for fast shocks and decreases for slow shocks. In
Fig. 14, the shock front from(x, y)∼ (3π/2, π/2) to (5π/4, 3π/4) is a fast shock and the
front from (x, y)∼ (π, 3π/4) to (π/2, π) is a slow shock.

Figure 15 plots the pressure distributions along a cut aty= 0.625π for the results at
t = 3. Shown are results from three calculations: one with the 8× 8 system without the
correction step, one with the 8× 8 system with the correction procedure, and one with the
7× 7 system with the correction step. The two that include the correction procedure provide
similar results. It tends to be more oscillatory when the∇ ·B= 0 condition is not enforced;
although all three results are consistent with each other at this time.



A WENO SCHEME FOR MHD 591

FIG. 14. The Orszag–Tang MHD turbulence problem with a uniform 192× 192 grid att = 3. The 8× 8
eigen-system is used. There are 12 contours for both density and pressure. The gray scale means that the brighter
color area has a larger value. The range forρ is from 1.1 to 6.2 and it is from 0.36 to 6.3 for p. The maximum
values of|v| and|B| are 1.7 and 3.0, respectively.

4. CONCLUSIONS

In this paper we have presented a 5th-order WENO finite difference scheme for ideal
MHD. Its application from hydrodynamic problems to MHD is straightforward, although
the MHD code requires considerably more work than the Euler code because of the com-
plexity associated with the MHD eigen-system. As in the Euler code, characteristic wave
decomposition and flux splitting are used in the MHD code. The same WENO approxima-
tion for the fluxes at the interfaces is also employed. Also, the extension to multi-spatial
dimensions is carried out by calculating the flux dimension-by-dimension. For both Euler
and MHD codes, there is a restriction on the grid. The finite difference ENO/WENO scheme
of third- or higher-order accuracy can only apply to a uniform grid or a smoothly varying
grid.

The numerical tests show that the new MHD codes are robust and capture shocks and
rarefaction waves well. The tests also indicate the importance of enforcing the divergence
free condition for the magnetic field. It helps to maintain the numerical stability.
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FIG. 15. The pressure distributions along a cut aty= 0.625π for the results of the Orszag–Tang MHD
turbulence problem att = 3. Shown are results from three calculations: one with the 8× 8 system without the
correction step (dotted curve), one with the 8× 8 system and with the correction procedure (marked with+), and
one with the 7× 7 system and with the correction step (solid curve).

There is a clear advantage of using the higher-order scheme. In a 2D test problem for the
Kelvin–Helmholtz instability, the 5th-order WENO code can attain same accuracy as the
2nd-order schemes with fewer grid points, which is an important consideration for three-
dimensional simulations. Although the 5th-order WENO scheme requires more operations
per grid-point update, it may actually use much less CPU time than a 2nd-order upwind
code with wave decomposition in the overall calculation. The main benefit, however, is the
feasibility of running a very large large-scale simulation with the 5th-order WENO scheme.
For instance, it is possible to run a 5003 system with the WENO scheme on a currently
available large computer system, but it will require additional computational work to run a
15003 system with the 2nd-order scheme.

Because of its small numerical dissipation, the high-order accurate WENO code may be
very useful in simulating physical problems where small physical dissipation is required.
For example, it may be useful in the 3D MHD model of the Earth’s magnetosphere; see, e.g.,
[30]. The interaction of the solar wind with the geomagnetic field results in the formation
of a bow shock and a magnetopause. The magnetopause is an interface between the mag-
netosheath and the magnetosphere. Since there are both magnetic shear and flow shear
across this boundary, the magnetic reconnection process and Kelvin–Helmholtz instabil-
ity may operate there. However, because of large numerical diffusion terms, reconnection
processes overwhelm the magnetospheric dynamics in most current global models. Using
a higher-order scheme may help to reduce the dissipation terms and thus help to realize the
Kelvin–Helmholtz instability in a 3D model.

In sum, we believe that there are uses of higher-order schemes. But we certainly do not
exclude any 2nd-order or 1st-order schemes, which can be quite efficient in 1D calculations,
or any adaptive codes, which are not included in our comparison. We should also note that
the efficiency comparison definitely depends on the physical problems. Lower-order codes
may be more efficient than higher-order codes in some problems. In addition, to achieve
a high-order accuracy, high-order accurate boundary conditions are required. This may
require more work for some calculations.
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As mentioned in the Introduction, when the rotation of the magnetic field exists, the
evolution of the MHD system may depend on the dissipation mechanism, which according
to the Navier–Stokes MHD equations, includes bulk and shear viscosities, resistivity, and
heat conductivity. Since no explicit diffusion terms are included in the code, the solution
may thus depend on numerical dissipation. The situation may be corrected in our future
code improvement by using the WENO shock capturing scheme for the fast and slow shock,
and by resolving the shock structure for the intermediate shock.
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